Расчет призмы обрушения откоса. Призма обрушения. Построение профиля откоса. Расчет крепления стенок котлованов и траншей

Если откос массива грунта имеет крутизну больше предельной, то произойдет обрушение грунта. Удержать массив в равновесии можно при помощи подпорной стенки. Подпорные стенки широко применяются в различных областях строительства. На рис. 5.9 показаны некоторые случаи применения подпорных стенок.

а) б) в)

Давление грунта, передаваемое призмой обрушения на грань стенки, носит название активного давления Е а . При этом подпорная стенка смещается в сторону от засыпки. Если же подпорная стенка смещается в сторону грунта, то грунт засыпки будет выпирать вверх. Стенка будет преодолевать вес грунта призмы выпирания, что потребует значительно большего усилия. Это соответствует пассивному давлению (отпору) грунта Е р .

Поскольку в пределах призмы обрушения возникает предельное равновесие, задача по определению давления грунта на подпорную стенку решается методами теории предельного равновесия со следующими допущениями: поверхность скольжения плоская, а призма обрушения соответствует максимальному давлению грунта на подпорную стенку. Эти допущения адекватны только для определения активного давления.

5.5.1. Аналитический метод определения давления грунта

на подпорную стенку

Рассмотрим условие предельного равновесия элементарной приз-

мы, вырезанной из призмы обрушения вблизи задней грани подпорной стенки при горизонтальной поверхности грунта и вертикальной задней грани подпорной стенки, при с = 0 (рис. 5.10). На горизонтальную и вертикальную площадки этой призмы при трении о стенку, равном нулю, будут действовать главные напряжения и .

Из условия предельного равновесия на глубине z

,(5.17)

здесь горизонтальное давление грунта, величина которого прямо пропорциональна глубине z , т.е. давление грунта на стенку будет распределяться по закону треугольника с ординатами = 0 на поверхности грунта и у подошвы стенки. На глубине, равной высоте стенки Н , давление . Тогда согласно условию (5.17) боковое давление на глубине Н

, (5.18)

а активное давление характеризуется площадью эпюры и равно

. (5.19)

Равнодействующая этого давления приложена на высоте от подошвы стенки.

Учет сцепления грунта. Для связного грунта, обладающего внутренним трением и сцеплением, условие предельного равновесия может быть представлено в виде

Сопоставляя (5.19) с (5.20), отметим, что выражение (5.19) характеризует давление сыпучего грунта без учета сцепления, а (5.20) показывает, насколько снижается интенсивность давления вследствие того, что грунт обладает сцеплением. Тогда это выражение можно представить в виде

, (5.21)

где , . (5.22)

Таким образом, сцепление грунта уменьшает боковое давление грунта на стенку на величину по всей высоте. Напомним, что связный грунт способен держать вертикальный откос высотой , определяемой по формуле

, (5.23)

поэтому до глубины от свободной поверхности засыпки связный грунт не будет оказывать давления на стенку. Полное активное давление связного грунта определяется как площадь треугольной эпюры со сторонами и (рис. 5.11).

. (5.24)

Пассивное сопротивление связных грунтов определяется аналогично, с учетом того, что в формулах (5.20) и (5.22) знак минус в скобках аргумента тангенса изменится на плюс.

5.5.2. Давление грунтов на подземные трубопроводы

Давление грунта на трубопровод определяют на основе общей теории предельного напряженного состояния. Вертикальное давление в грунтовом массиве, ограниченном горизонтальной поверхностью, на глубине z (рис. 5.12, а ) с удельным весом грунта определяют по формуле

Боковое давление грунта на той же глубине

где – коэффициент бокового давления грунта в условиях естественного залегания, равный .

Если в зоне, контуром которой является трубопровод, грунт в точности заменить самим трубопроводом (рис. 5.12, б ), то естественно, что этот трубопровод будет испытывать давление, которое определяется зависимостями (5.26) и (5.27).

Давление на трубопровод передается сверху и с боков и вызывает равную и противоположно направленную реакцию основания: оно принимается в виде среднего равномерно распределенного давления – вертикального интенсивностью р и горизонтального интенсивностью q , причем имеет место соотношение р > q . Следует различать три принципиально различных способа прокладки трубопроводов: в траншее (рис. 5.13, а ), с помощью закрытой проходки (прокола) (рис. 5.13, б ) и под насыпью (рис. 5.13, в ).

При одинаковой глубине заложения Н трубопроводов давление р будет различным: при траншейной укладке р < ; в насыпи р > и при проколе, если Н сравнительно мало, р = , при больших значениях Н р < .

При укладке трубопроводов в траншеи грунт, находящийся сбоку от траншеи, уже ранее уплотнился под действием собственного веса, в то время как грунт, засыпанный в траншею после укладки трубопровода, находится в рыхлом состоянии. Поэтому уплотнению этого грунта-засыпки и его осадке противодействуют силы трения по бортам траншеи, и грунт-засыпка как бы зависает на стенках траншеи и тем более, чем больше будет глубина траншеи.

Составим условия равновесия для элементарного слоя , выделенного на глубине z (рис. 5.13, а ). На этот элемент будут действовать собственный вес слоя грунта засыпки сверху и снизу , а у стенок траншеи сопротивление грунта сдвигу на единицу площади (где с – сцепление грунта; – угол трения о стенку траншеи). Примем далее коэффициент бокового давления грунта постоянным, т.е.

.

Проектируем силы на вертикальную ось z , получим

После приведения подобных членов и интегрирования при граничных условиях (z = 0; = 0) получим полное давление грунта на глубине z , максимальное значение которого (введя коэффициент перегрузки n ≈ 1,2) можно представить в виде

, (5.28)

где – коэффициент давления грунта на трубопровод в траншее.

Значение для труб, закладываемых в траншеи, не может быть больше единицы ( ≤ 1). Для приближенного определения можно пользоваться кривыми графика профессора Г.К. Клейна, которые дают с некоторым запасом (полагая сцепление с = 0).

где h с – расчетная высота свода обрушения; B – ширина свода обрушения; f" – коэффициент крепости (по М.М. Протодьяконову), принимаемый для насыпных грунтов 0,5; влажных и водонасыщенных песков – 0,6; глинистых грунтов – 0,8.

Контрольные вопросы

1.Какие инженерные задачи рассматриваются в теории предельного равновесия грунтовой среды?

2.На какие две группы подразделяются предельные состояния?

3.Запишите условия предельного равновесия песка.

4.Запишите условие предельного равновесия связного грунта,

выраженное через главные напряжения.

5.Какая нагрузка считается критической? При каких условиях она определяется?

6.Что такое расчетное сопротивление грунта основания?

7.Какая нагрузка является предельной нагрузкой на основание?

8.Какие вы знаете решения по определению предельной нагрузки на основание?

9.От каких факторов зависит устойчивость откоса?

10.Какие основные причины могут вызвать нарушение устойчивости откосов?

12.Каков предельный угол наклона сыпучего откоса?

13.С какой целью применяют подпорные стенки?

14.Что называется активным давлением грунта на стенку?

15.Что называют пассивным давлением грунта на стенку?

16.Каким образом влияет на величину активного и пассивного давлений на стенку удельное сцепление в грунте?


Раздел 6. СПЕЦИАЛЬНЫЕ ВОПРОСЫ МЕХАНИКИ ГРУНТОВ

Расчет осадок заключается в том, что приравниваются осадки, с одной стороны, штампа (гибкого или жесткого), находящегося на упругом однородном линейно-деформируемом полупространстве, а, с другой стороны, поверхности безграничного линейно-деформируемого слоя при тех же величинах внешней нагрузки, действующей одинаково по всей границе этого слоя, и модуля деформации. В результате этого приравнивания находится толщина такого слоя h экв, названного эквивалентным. На рисунке 5.6.1 рассматривается схема способа:

Расчет осадки по способу эквивалентного слоя

♯ Виды нарушения откосов

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь.

Откосы нередко подвержены деформированию в виде обрушений (рис. 5.7.1,а), оползней (см. рис. 5.7.1 б,в,г), осыпаний и оплывании (см. рис. 5.7.1 ,д).

Обрушения имеют место при потере массивом грунта опоры у подножия откоса. Оползни и оползания характеризуются перемещением некоторого объема грунта. Осыпание происходит при превышении силами сдвига сопротивления несвязного грунта на незакрепленной поверхности. Оплыванием (сплывом) называется постепенная деформация нижней части обводненного откоса или склона без образования четких поверхностей скольжения.

Основными причинами потери устойчивости откосов являются:

– устройство недопустимо крутого откоса;

– устранение естественной опоры массива грунта из-за разработки траншей, котлованов, подмыва откосов и т.д.;

– увеличение внешней нагрузки на откос, например, возведение сооружений или складирование материалов на откосе или вблизи него;

– снижение сцепления и трения грунта при его увлажнении, что возможно при повышении уровня подземных вод;

– неправильное назначение расчетных характеристик прочности грунта;

– влияние взвешивающего действия воды на грунты в основании;

– динамические воздействия (движение транспорта, забивка свай и т.п.), проявление гидродинамического давления и сейсмических сил.

Нарушение устойчивости откосов часто является результатом нескольких причин, поэтому при изысканиях и проектировании необходимо оценивать вероятные изменения условий существования грунтов в откосах в течение всего периода их эксплуатации.

Рисунок 5.7.1. Характерные виды деформаций откосов:
а - обрушение; б - сползание; в - оползень; г - оползень с выпором; д - оплывание;
1 - плоскость обрушения; 2 - плоскость скольжения; 3 - трещина растяжения; 4 - выпор грунта;
5 - слабая прослойка; б, 7 - установившийся и первоначальный уровни воды;
8 - поверхность оплывания; 9 - кривые депрессии.

Различают три типа разрушения откоса:

– разрушение передней части откоса. Для крутых склонов (а > 60°) характерно сползание с разрушением передней части откоса. Такое разрушение чаше всего возникает в вязких грунтах, обладающих адгезионной способностью и углом внутреннего трения;

– разрушение нижней части откоса. На сравнительно пологих откосах разрушение происходит таким образом: поверхность скольжения соприкасается с глубоко расположенным твердым слоем. Такой тип разрушения чаще всего возникает в слабых глинистых грунтах, когда твердый слой расположен глубоко;

– разрушение внутреннего участка откоса. Разрушение происходит таким образом, что край поверхности скольжения проходит выше передней части откоса. Такое разрушение также возникает в глинистых грунтах, когда твердый слой находится сравнительно неглубоко

Методы расчета устойчивости откосов

Основными элементами открытой разработки карьера, котлована или траншей без крепления откосов является высота Н и ширина l уступа, его форма, крутизна и угол естественного откоса α (рис.5.8.1). Обрушение уступа происходит чаще всего по линии ВС, расположенной под углом θ к горизонту. Объем АВС называется призмой обрушения. Призма обрушения удерживается в равновесии силами трения, приложенными в плоскости сдвига.

Схема откоса грунта:
1 - откос; 2 - линия скольжения; 3 - линия, соответствующая углу внутреннего трения;
4 - возможное очертание откоса при обрушении; 5 - призма обрушения массива грунта.

Устойчивость откосов анализируется с помощью теории предельного равновесия или путем рассмотрения призмы обрушения или сползания по потенциальной поверхности скольжения как твердого тела.

Устойчивость откоса в основном зависит от его высоты и вида грунта. Для установления некоторых понятий рассмотрим две элементарные задачи:

– устойчивость откоса идеально сыпучего грунта;

– устойчивость откоса идеально связного массива грунта.

Рассмотрим в первом случае устойчивость частиц идеально сыпучего грунта, слагающего откос(рисунок 5.8.2.а). Для этого составим уравнение равновесия твердой частицы М, которая лежит на поверхности откоса. Разложим вес этой частицы F на две составляющие: нормальную N к поверхности откоса АВ и касательную Т к ней. При этом сила Т стремится сдвинуть частицу М к подножию откоса, но ей будет препятствовать противодействующая сила Т ", которая пропорциональна нормальному давлению.

Схема сил, действующих на частицу откоса: а - сыпучий грунт; б - связный грунт

где f – коэффициент трения частицы грунта по грунту, равный тангенсу угла внутреннего трения.

Уравнение проекции всех сил на наклонную грань откоса в условиях предельного равновесия

где tgα=tgφ, от сюда α=φ.

Таким образом, предельный угол откоса сыпучего грунта равен углу внутреннего трения. Этот угол носит название угол естественного откоса.

Рассмотрим устойчивость откоса АД высотой Н к для связного грунта (рис. 5.8.2б). Нарушение равновесия при некоторой предельной высоте произойдет по плоской поверхности скольжения ВД, наклоненной под углом θ к горизонту, так как наименьшей площадью такой поверхности между точками В и Д будет обладать плоскость ВД. По всей этой плоскости будут действовать силы удельного сцепления С.

Уравнение равновесия всех сил, действующих на оползневую призму АВД.

Согласно рис. 5.8.2б сторона призмы обрушения АВ = Н к ctg θ, получим

где γ – удельный вес грунта.

Силами, сопротивляющимися скольжению, будут лишь силы удельного сцепления, которые распределяются по плоскости скольжения

В верхней точке В призмы AВД давление будет равно нулю, а в нижней точке Д максимальное, тогда по середине - половине удельного сцепления.

Составим уравнение проекции всех сил на плоскость скольжения и приравняем ее к нулю:

откуда

Полагая sin2θ=1 при θ = 45°, получим

Из последнего выражения видно, что при высоте котлована (откоса) Н к > 2с/γ произойдет обрушение массива грунта по некоторой плоскости скольжения под углом θ к горизонту.

Грунты обладают не только сцеплением, но и трением. В связи с этим проблема устойчивости откосов становится значительно сложнее, чем в рассмотренных случаях.

Поэтому на практике для решения задач в строгой постановке, большое распространение получил метод круглоцилиндрических поверхностей скольжения.

♯ Метод круглоцилиндрических поверхностей скольжения

Большое распространение на практике получил метод круглоцилиндрических поверхностей скольжения. Сущность этого метода заключается в отыскании круглоцилиндрической поверхности скольжения с центром в некоторой точке О, проходящей через подошву откоса, для которой коэффициент устойчивости будет минимальным (рис).

Рис. 5.9.1. Схема к расчету устойчивости откоса методом круглоцилиндрической поверхности скольжения

Расчет ведется для отсека, для чего оползающий клин ABC разбивается на п вертикальных отсеков. Делается предположение, что нормальные и касательные напряжения, действующие по поверхности скольжения, в пределах каждого из отсеков оползающего клина определяются весом данного отсека Q t и равны соответственно:

где А i – площадь поверхности скольжения в пределах 1-го вертикального отсека, А i = 1l i ;

l – длина дуги скольжения в плоскости чертежа (см. рис. 5.6.1).

Препятствующее оползанию откоса сопротивление сдвигу по рассматриваемой поверхности в предельном состоянии τ u =σ·tgφ+c

Устойчивость откоса можно оценить отношением моментов удерживающих М s,l и сдвигающих M s,a сил. Соответственно коэффициент запаса устойчивости определим по формуле

Момент удерживающих сил относительно О представляет собой момент сил Q i .

Момент сдвигающих сил относительно точки О

♯ Давление грунта на ограждающую поверхность

Давление грунта на ограждающую поверхность зависит от многих факторов: способа и последовательности засыпки грунта; естественного и искусственного трамбования; физико-механических свойств грунта; случайных или систематических сотрясений грунта; осадок и перемещений стенки под действием собственного веса, давления грунта; типа сопряженных сооружений. Все это значительно осложняет задачу определения давления грунта. Существуют теории определения давления грунта, использующие предпосылки, позволяющие с разной степенью точности выполнять решения задачи. Отметим, что решение этой задачи выполняется в плоской постановке.

Различают следующие виды бокового давления грунта:

Давление покоя (E 0), называемое также естественным (натуральным), действующее в том случае, когда стена (ограждающая поверхность) неподвижна или относительные перемещения грунта и конструкции малы (рис.;

Схема давления покоя

Активное давление (E а), возникающее при значительных перемещениях конструкции в направлении давления и образования плоскостей скольжения в грунте, соответствующих его предельному равновесию (рис. 5.10.2). ABC - основание призмы обрушения, высота призмы 1 м;

Рис. 5.10.2 Схема активного давления

Пассивное давление (Е р), появляющееся при значительных перемещениях конструкции в направлении, противоположном направлению давления и сопровождающееся началом «выпора грунта» (рис. 5.10.3). ABC- основание призмы выпирания, высота призмы 1 м;

Схема пассивного давления

Дополнительное реактивное давление (Е r), которое образуется при движении конструкции в сторону грунта (в направлении, противоположном давлению), но не вызывает «выпора грунта».

Наибольшей из этих нагрузок (для одного и того же сооружения) является пассивное давление, наименьшей - активное. Соотношение между рассмотренными силами выглядит так: Е а <Е о <Е r <Е Р

44 Алгоритм расчета осадки основания фундамента

Задача расчета осадки основания сводиться к вычислению интеграла.

СНиП предусматривает вычисление интеграла численным методом путем разбиения грунтовой толщи основания на отдельные элементарные слои толциной h i и при этом вводятся следующие допущения:

1. Каждый элементарный слой имеет постоянные Е 0 и μ 0

2. Напряжение в элементарном слое постоянно по глубине и равно полусумме верхнего и нижнего напряжений

3. Имеется граница сжмаемой толщи на глубине, где σ zp =0.2σ zq (где σ zq напряжение от собственного веса грунта)

Алгоритм расчета осадки основания фундамента

1. Основание разбивается на элементарные слои толщиной; где h i <0.4b, b- ширина подошвы фундамента.

2. Строиться эпюра нарпяжений от собственного веса грунта σ zq

3. Строиться эпюра напряжений от внешней нагрузки σ zp

4. Устанавливается граница сжимаемой толщи.

5. Определяетсяя напряжение в каждом элементарном слое: σ zpi =(σ zp верх +σ zp ниж)/2

6. Рассчитывается осадка каждого элементарного слоя: S i =βσ zpi h i /E i

7. Вычисляется конечная осадка основания фундамента, как сумма осадок
всех элементарных слоев, входящих в границу сжимаемой толщи.


45. Понятие о расчете осадок во времени

При наблюдении за осадками оснований фундаментов был получен график развития осадок во времени.

Вводиться понятие степени консолидации: U=S t /S KOH

Конечная осадка рассчитывается методом СНиП.

Степень консолидации определяется решением дифференциального уравнения одномерной фильтрации:

U=1-16(1-2/π)e - N /π 2 +(1+2/(3π))e -9 N /9+…

Физический смысл степени консолидации выражает величина показателя N:

N=π 2 k Ф t/(4m 0 h 2 γ ω)

Где, k Ф ~ коэффициент фильтрации, [см/год]

m 0 – коэффициент относительной сжимаемости слоя; [см 2 /кг]

h - толщина сжимаемого слоя; [см]

t - время; [год]

γ ω - удельный вес воды

Определить осадку основания фундамента через 1, 2 года и 5 лет. Давление под подошвой фундамента р = 2 кгс/см 2 ; грунт - суглинок; толщина сжимаемого слоя 5м; коэффициент фильтрации k Ф = 10 - 8 см/сек; Коэффициент относительной сжимаемости суглинка m 0 =0,01 см 2 /кг.

1. Определяем величину коэффициента консолидации: ^Пе ревод из секунд в год

С V =k Ф /(m 0 γ ω)=(10 -8 *3*10 7){см/год}/(0.01{см2/кг}*0,001)=3*10 4 см 2 /год

2. Определяем величину N:

N= π 2 С V t/(4h 2)=0.3t

3. Определяем величину степени консолидации:

U 1 =1-16(1-2/π)e -0.3 t /π 2

4. Вычисляем величину конечной осадки:

S=hm 0 p=500*0.01*2=10 см

5. Вычисляем осадки во времени, как:
S t =S k U i

Основными элементами открытой разработки карьера, котлована или траншей без крепления откосов является высота Н и ширина l уступа, его форма, крутизна и угол естественного откоса α (рис. 9.3 ). Обрушение уступа происходит чаще всего по линии ВС , расположенной под углом θ к горизонту. Объем ABC называется призмой обрушения. Призма обрушения удерживается в равновесии силами трения, приложенными в плоскости сдвига.

Нарушение устойчивости земляных масс часто сопровождается значительными разрушениями мостов, дорог, каналов, зданий и сооружений, расположенных на оползающих массивах. В результате нарушения прочности (устойчивости природного склона или искусственного откоса) формируются характерные элементы оползня (рис. 9.4 ).

Устойчивость откосов анализируется с помощью теории предельного равновесия или путем рассмотрения призмы обрушения или сползания по потенциальной поверхности скольжения как твердого тела.

Рис. 9.3. Схема откоса грунта: 1 - откос; 2 - линия скольжения; 3 - линия, соответствующая углу внутреннего трения; 4 - возможное очертание откоса при обрушении; 5 - призма обрушения массива грунта

Рис. 9.4. Элементы оползня
1 - поверхность скольжения; 2 - тело оползня; 3 - стенка срыва; 4 - положение склона до оползневого смещения; 5 - коренные породы склона

Устойчивость откоса в основном зависит от его высоты и вида грунта. Для установления некоторых понятий рассмотрим две элементарные задачи:

  • устойчивость откоса идеально сыпучего грунта;
  • устойчивость откоса идеально связного массива грунта.

Устойчивость откоса идеально сыпучего грунта

Рассмотрим в первом случае устойчивость частиц идеально сыпучего грунта , слагающего откос. Для этого составим уравнение равновесия твердой частицы М , которая лежит на поверхности откоса (рис. 9.5,а ). Разложим вес этой частицы F на две составляющие: нормальную N к поверхности откоса АВ и касательную Т к ней. При этом сила Т стремится сдвинуть частицу М к подножию откоса, но ей будет препятствовать противодействующая сила Т" , которая пропорциональна нормальному давлению.

Устойчивость откоса идеально связного массива грунта

Рассмотрим устойчивость откоса АД высотой Н k для связного грунта (рис. 9.5,6 ). Нарушение равновесия при некоторой предельной высоте произойдет по плоской поверхности скольжения ВД , наклоненной под углом θ к горизонту, так как наименьшей площадью такой поверхности между точками В и Д будет обладать плоскость ВД . По всей этой плоскости будут действовать силы удельного сцепления С .

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Вятский государственный университет

Факультет строительства и архитектуры

Кафедра промышленной экологии и безопасности

Б.И.Дегтерев безопасная организация земляных работ

Методические указания

к практическим занятиям

Дисциплина «Безопасность жизнедеятельности»

Печатается по решению редакционно-издательского совета Вятского государственного университета

УДК 658.345:614.8(07)

Дегтерев Б.И. Безопасная организация земляных работ. Методические указания к практическим занятиям по дисциплине «Безопасность жизнедеятельности». – Киров: Изд-во ВятГУ, 2010. – 12 с.

В методических указаниях рассмотрены основные причины производственного травматизма при ведении земляных работ. Даны методики расчета профилей откосов и крепления стенок котлованов и траншей. Приведены необходимые справочные материалы, представлены иллюстрации. Составлены задания для расчетов.

Подписано в печать Усл. печ. л.

Бумага офсетная Печать матричная

Заказ № Тираж

Текст напечатан с оригинала-макета, представленного автором

610000, г.Киров, ул.Московская, 36

©Б.И.Дегтерев, 2010

©Вятский государственный университет, 2010

Построение профиля откоса. Расчет крепления стенок котлованов и траншей

Основными видами земляных работ в промышленном и гражданском строительстве являются разработка котлованов, траншей, планировка участков и т.д. Анализ травматизма в строительстве показывает, что на земляные работы приходится около 5,5% всех несчастных случаев; из всего количества несчастных случаев с тяжелым исходом по всем видам работ 10% связано с выполнением земляных работ.

Основная причина травматизма при земляных работах – обрушение грунта, которое может происходить вследствие:

а) превышения нормативной глубины разработки выемок без креплений;

б) нарушения правил разработки траншей и котлованов;

в) неправильного устройства или недостаточной устойчивости и прочности креплений стенок траншей и котлованов;

г) разработки котлованов и траншей с недостаточно устойчивыми откосами;

д) возникновения неучтенных дополнительных нагрузок (статических и динамических) от строительных материалов, конструкций, механизмов;

е) нарушения установленной технологии земляных работ;

ж) отсутствия водоотвода или его устройства без учета геологических условий строительной площадки.

1. Устройство откосов

Основными элементами открытой разработки карьера, котлована или траншеи без крепления являются указанные на рисунке 1 ширина l и высота h уступа, форма уступа (плоская, ломаная, криволинейная, ступенчатая), угол откоса α , крутизна откоса (отношение высоты откоса к его заложению h : l ).

Рис. 1 – геометрические элементы уступа:

h – высота уступа; l – ширина уступа; θ – угол предельного

равновесия откоса; α – угол между плоскостью обрушения и

горизонтом; АВС – призма обрушения; φ – угол естественного откоса

Установление безопасной высоты уступа, крутизны откоса и наиболее удобной ширины бермы является важной процедурой при разработке котлованов и траншей, от правильности выполнения которой зависит эффективность и безопасность производства земляных работ.

Производство работ, связанных с нахождением работников в выемках с откосами без креплений в насыпных, песчаных и пылевато-глинистых грунтах выше уровня грунтовых вод (с учетом капиллярного поднятия) или грунтах, осушенных с помощью искусственного водопонижения, допускается при глубине выемки и крутизне откосов, указанных в таблице 1 .

При напластовании различных видов грунта крутизну откосов назначают по наименее устойчивому виду от обрушения откоса.

Крутизна откосов выемок глубиной более 5 м во всех грунтах (однородных, неоднородных, естественной влажности, переувлажненных) и глубиной менее 5 м при расположении подошвы выемки ниже уровня грунтовых вод должна устанавливаться по расчету.

Таблица 1

Нормативная крутизна откоса при h ≤ 5 м по СНиП

Виды грунтов

Крутизна откоса h : l при глубине выемки до

Насыпные неслежавшиеся

Песчаные

Суглинок

Лессовые

Расчет может быть выполнен по методике Н.Н.Маслова, изложенной в . Во всех случаях устойчивый откос должен иметь профиль переменной крутизны, понижающейся с глубиной выемки. Методика позволяет учесть следующие факторы:

а) изменение характеристик грунта в его отдельных слоях;

б) наличие дополнительной пригрузки бермы откоса распределенной нагрузкой.

При расчете крутизну профиля откоса устанавливают для его отдельных слоев толщиной Δ Z = 1…2 м, которые должны быть привязаны к естественному напластованию слоев в данном грунте.

Схема построения профиля откоса показана на рисунке 2.

Расчетные формулы для координаты Х i , м, имеют следующий вид:

а) для общего случая нагруженной бермы (Р 0 > 0)

, (1)

Р 0

Х 0

Z i h

α i

X i

Рис. 2 – схема построения профиля откоса

б) для частного случая ненагруженной бермы (Р 0 = 0)

. (2)

В формулах (1) и (2) приняты обозначения:

А = γ · Z i · tgφ ;

B = P 0 · tgφ + C ;

γ – объемный вес грунта, т/м 3 ;

С – удельное сцепление грунта, т/м 2 ;

Р 0 – равномерно распределенная по поверхности откоса нагрузка, т/м 2 .

Результаты расчетов целесообразно свести в таблицу (табл. 2).

По данным вычислений строится профиль равноустойчивого откоса.

Таблица 2

Вычисление профиля равноустойчивого откоса по методике Н.Н.Маслова

Z i , м

γ· Z i , т/м 2

А , т/м 2

В, т/м 2

X i , м

α i

Задание 1

При выполнении земляных работ, связанных с разработкой котлована, возможно обрушение грунта и травмирование рабочих. Во избежание несчастного случая необходимо рассчитать допустимую крутизну откоса котлована при глубине 5 и 10 м для глинистого грунта.

Для котлована глубиной 5 м:

а) определить угол между направлением откоса и горизонталью и отношение высоты откоса к его заложению;

б) выполнить эскиз уступа котлована.

Для котлована глубиной 10 м:

а) провести расчет профиля равноустойчивого откоса, данные свести в таблицу по форме табл. 2;

б) по данным расчетной таблицы построить профиль откоса.

Исходные данные взять из таблицы 3.

Таблица 3

Исходные данные к заданию 1

Су-гли-нок

Су-гли-нок

Су-гли-нок

γ , т/м 3

С , т/м 2

Р 0 , т/м 2