Плазменное напыление покрытий. Плазменно-дуговое напыление Плазменное нанесение покрытий напыление и наплавка

При плазменном способе нанесения покрытий напыляемый материал разогревается до жидкого состояния и переносится на обрабатываемую поверхность при помощи потока плазмы с высокой температурой. Напыляемый материал выпускается в виде прутков, порошков или проволоки. Порошковый способ наиболее распространенный.

Уникальность метода плазменного напыления заключается в высокой температуре (до 50 тыс. градусов по Цельсию) плазменной струи и высокой скорости (до 500 м/с) движения частиц в струе. Нагрев же напыляемой поверхности невелик и составляет не более 200 град.

Производительность плазменного напыления составляет 3-20 кг/ч для плазмотронных установок мощностью 30...40 кВт и 50-80 кг/ч для оборудования мощностью 150...200 кВт.

Прочность сцепления покрытия с поверхностью детали в среднем равна 10-55 МПа на отрыв, а некоторых случаях — до 120 МПа. Пористость покрытия находится в пределах 10...15%. Толщина покрытия обычно не более 1 мм, так как при ее увеличении в напыляемом слое возникают напряжения, стремящиеся отделить его от поверхности детали.

Плазменно-дуговое напыление в сочетании с одновременной обработкой поверхности вращающейся металлической щеткой позволяет уменьшить пористость покрытия до 1-4%, а общую толщину напыления увеличить до 20 мм.

Плазмообразующими газами служат азот, гелий, аргон, водород, их смеси и смесь воздуха с метаном, пропаном или бутаном.

Для плазменного напыления используют проволоку, в том числе порошкового типа, порошки из черных и цветных металлов, никеля, молибдена, хрома, меди, оксиды металлов, карбиды металлов и их композиции с никелем и кобальтом, сплавы металлов, композиционные материалы (никель-графит, никель-алюминий и др.) и механические смеси металлов, сплавов и карбидов. Регулирование режима напыления позволяет наносить как тугоплавкие материалы, так и легкоплавкие.

Основой для плазменного напыления могут служить металлы и неметаллы (пластмасса, кирпич, бетон, графит и др.). Для нанесения покрытий на небольшие поверхности применяется микроплазменный способ напыления, который позволяет сэкономить потери напыляемого материала (ширина напыления 1-3 мм).

Детали плазмотрона

С целью повышения адгезии напыленных покрытий, защиты от окисления, уменьшения пористости используется метод плазменного напыления в защитной среде (вакуум, азот, смесь азота с аргоном и водородом) и с применением специальных сопел, закрывающих область между распылителем и обрабатываемой поверхностью. Перспективным направлением в технологии плазменного напыления является сверхзвуковое напыление.

Процесс плазменного напыления включает 3 основных этапа:

1) Подготовка поверхности.

2) Напыление и дополнительная обработка покрытия для улучшения свойств.

3) Механическая обработка для достижения чистовых размеров.

Предварительные размеры поверхностей под напыление должны быть определены с учетом толщины напыления и припуска на последующую механическую обработку. Переходы поверхностей должны быть плавными, без острых углов, во избежание отслаивания покрытия. Отношение ширины паза или диаметра отверстия к его глубине должно быть не меньше 2.

Детали перед напылением должны быть тщательно очищены и обезжирены. Ремонтные детали, имеющие замасленные пазы или каналы, следует нагреть в печи при температуре 200-340 град. в течение 2-3 часов для выпаривания масла.

Далее производится активация поверхности — придание ей определенной шероховатости для обеспечения адгезии. Активацию производят при помощи обдува детали сжатым воздухом с абразивом или нарезанием рваной резьбы.

Абразив выбирают зернистостью 80...150 по ГОСТ3647, или применяют чугунную/стальную дробь ДЧК, ДСК №01...05 по ГОСТ 11964.

Металлическая дробь не применяется для обработки жаростойких, коррозионно-стойких сталей и цветных металлов и сплавов, т. к. может вызвать их окисление.

Шероховатость поверхности под плазменное напыление должна составлять 10...60 Rz, поверхность должна быть матовой.

Поверхности, не подлежащие абразивной обработке, защищают экранами. Зона обдува на 5+/-2 мм должна быть больше, чем номинальный размер напыленной поверхности.

Тонкие детали закрепляют в приспособлениях с целью предотвращения их коробления во время обработки.

Расстояние от сопла до детали при абразиво-струйной обработке должно находиться в пределах 80...200 мм, меньшие значения принимают для более твердых материалов, большие — для мягких. После этого детали обеспыливают путем обдува сжатым воздухом.

Промежуток времени между очисткой и напылением должен составлять не более 4ч, а при напылении алюминия и других быстро окисляющихся материалов — не более часа.

Нарезание рваной резьбы вместо абразиво-струйной обработки применяют для деталей с формой тел вращения. Резьбу нарезают на токарном станке обычным резьбовым резцом, смещенным ниже оси детали. Резьбу нарезают без охлаждения за один проход. Шаг резьбы выбирают по таблице 1.

Для плазменного напыления следует применять порошки одной фракции, форма частиц — сферическая. Оптимальный размер частиц для металлов составляет около 100 мкм, а для керамики — 50...70 мкм. В случае, если порошки хранились в негерметичной таре, их нужно прокалить при температуре 120...130 градусов в течение 1,5-2 ч в сушильном шкафу.

Те части детали, которые не подвергаются напылению, защищают экранами из асбеста или металла, или обмазками.

Предварительный подогрев детали перед напылением осуществляют плазмотроном до температуры 150...180 градусов.

Режимы обработки определяют опытным путем. Средние значения режимов плазменного напыления следующие:

1) Расстояние от сопла до детали — 100...150 мм.

2) Скорость струи — 3...15 м/мин.

3) Скорость вращения детали — 10...15 м/мин.

4) Угол напыления — 60...90 градусов.

Общую толщину покрытия набирают несколькими циклами с перекрытием полос напыления на 1/3 диаметра пятна напыления.

После напыления деталь снимают с плазмотрона, удаляют защитные экраны и охлаждают до комнатной температуры.

Рисунок 1 - Принципиальная схема плазменного порошкового напыления: 1 - подвод плазмообразующего газа, 2 - катод плазмотрона, 3 - корпус катода, 4 - изолятор, 5 - корпус анода, 6 -порошковый питатель, 7 - подвод газа-носителя порошка, 8 - плазменная дуга, 9 - источник питания.

Рисунок 2 - Принципиальная схема плазменного напыления с применением проволоки: 1 - подвод плазмообразующего газа, 2 - катод плазмотрона, 3 - корпус катода, 4 - изолятор, 5 - корпус анода, 6 - механизм подачи проволоки, 7 - сплошная или порошковая проволока, 8 - плазменная дуга, 9 - источник питания.

Рисунок 3 - Структура покрытия, напыленного плазменным способом

Для улучшения качества напыленных покрытий применяют следующие приемы:

1) обкатка роликами под электрическим током;

2) напыление с одновременной обработкой металлическими щетками;

3) оплавление покрытий из самофлюсующихся сплавов. Оплавление производят с помощью печей, ТВЧ, нагретых расплавов солей и металлов, плазменным, лазерным или газопламенным способом. Температура оплавления покрытия никель-хром-бор-кремний-углерод составляет 900..1200 градусов.

Чистовые размеры деталей после плазменного напыления получают точением и шлифованием с охлаждением водными растворами и водно-масляными эмульсиями. Шлифкруги выбирают из электрокорунда марки Э на керамической связке, зернистостью 36...46, твердостью СН. Режимы шлифования следующие: скорость вращения круга 25...30 м/с, подача круга 5...10 мм/об, скорость вращения детали 10...20 м/мин, подача детали 0,015...0,03 мм/дв.х.

Далее производят окончательный контроль, в случае, если на поверхности детали с напылением есть трещины, отслоения, риски, чернота, не выдержаны чистовые размеры, то деталь возвращают на исправление дефекта (не более 1 раза), при этом область напыления должна быть увеличена на 10...15 мм по периметру.

Плазменное напыление является одним из способов газотермического нанесения покрытий. В основе этого процесса лежит нагрев напыляемого материала до жидкого или пластического состояния, перенос его высокотемпературной плазменной струей к подложке с последующим образованием слоя покрытия.

При плазменном напылении в качестве напыляющих материалов применяют порошки, проволоки, прутки. Наиболее широко распространено напыление порошками. Схема плазменного напыления с использованием порошковых материалов показана на рис. 1. В плазмотроне, состоящем из водоохлаждаемого катодного узла (катод 2 и корпус 3) и анодного узла, с помощью источника 9 постоянного сварочного тока возбуждается плазменная дуга 8, которая стабилизируется стенками канала сопла и плазмообразуюшим газом, поступающим через подвод 1. Порошок подают из порошкового питателя 6 с помощью газа, который поступает по подводу 7.

Температура плазменной струи достигает 5000-55000 °С, а скорость истечения - 1000-3000 м/с. В плазменной струе частицы порошка расплавляются и приобретают скорость 50-500 м/с. Скорость полета частиц порошка зависит от их размера, плотности материала, силы сварочного тока дуги, природы и расхода плазмообразующего газа, конструкции плазмотрона. Порошок вводят в плазменную струю ниже среза сопла, на срез сопла или непосредственно в сопло. Нагрев напыляемых деталей не превышает 100-200 °С.

Рис. 1. Схема плазменного напыления порошком:

1 - подвод плазмообразующего газа; 2 - катод плазмотрона; 3 - корпус катода; 4 - изолятор; 5 - корпус анода; 6 - порошковый питатель; 7 - подвод газа, транспортирующего порошок; 8 - плазменная дуга; 9 - источник питания.

К преимуществам способа плазменного напыления относят возможность получения покрытий из большинства материалов, плавящихся без разложения и ограничения по температуре плавления. Производительность плазменного напыления достаточно высока: 3-20 кг/ч для плазмотронов с мощностью 30-40 кВт и 50-80 кг/ч для плазмотронов мощностью 150-200 кВт.

Плазменным напылением наносят покрытия как на плоские поверхности, так и на тела вращения и криволинейные поверхности. Для покрытия характерна слоистая структура с высокой неоднородностью физических и механических свойств (рис. 2). Тип связей между покрытием и деталью (подложкой), а также между частицами покрытия обычно смешанный - механическое сцепление, сила физического и химического взаимодействий. Прочность сцепления покрытия с подложкой обычно составляет 10-50 МПа при испытаниях на нормальный отрыв.

Физические особенности формирования покрытий обуславливают появление открытой и закрытой пористостей. По мере увеличения толщины наносимого слоя открытые поры перекрываются, и пористость покрытия снижается. Поэтому плотность плазменных покрытий отличается от плотности материала и колеблется в пределах 80-97%. Обычно пористость плазменных покрытий составляет 10-15%.

Толщина покрытия практически не ограничена возможностями самого способа. Однако в силу физических особенностей процесса образования покрытий с увеличением толщины наносимого слоя в нем возрастают внутренние напряжения, которые стремятся оторвать покрытие от подложки. Поэтому обычно толщина покрытия не превышает 1 мм. Конструктивную нагрузку несет материал детали, а материал покрытия придает поверхности детали такие свойства, как твердость, износостойкость и т. п.

В качестве плазмообразующих газов применяют аргон, азот высокой чистоты, водород, гелий, а также смеси этих и других газов. В последние десятилетия успешно развиваются процессы плазменного напыления с использованием в качестве плазмообразующего газа смеси воздуха с горючим углеводородным газом (метаном, пропан-бутаном).

Рис. 2. Схема структуры плазменного покрытия:

1 - граница между частицами напыленного материала;

2 - граница между слоями;

3 - граница между покрытием и деталью;

4 - частица напыленного материала;

5 - поверхность детали.

Рис. 3. Микрофотография плазменного покрытия.

Для генерирования плазмы используют различные плазмотроны. Реализуемые в конкретной конструкции диапазон и уровень удельных мощностей характеризуют эффективность преобразования электрической энергии дуги в тепловую плазменной струи, а также технологические возможности плазмотрона.

Задача разработки технологического плазмотрона всегда сводится к созданию относительно простой, ремонтопригодной конструкции, обеспечивающей стабильную длительную работу в широком диапазоне изменения сварочного тока дуги, расхода и состава плазмообразующего газа, а также генерирование плазменной струи с воспроизводимыми параметрами, что позволяет эффективно обрабатывать материалы с различными свойствами.

В практике напыления применяют как однородные порошки различных материалов (металлов, сплавов, оксидов, бескислородных тугоплавких соединений), так и композиционные, а также механические смеси указанных материалов.

Наиболее распространены следующие порошковые материалы:

металлы - Ni, Al, Mo, Ti, Cr, Cu;

сплавы - легированные стали , чугун , никелевые , медные , кобальтовые , титановые , в том числе самофлюсующиеся сплавы (Ni-Cr-B-Si, Ni-B-Si, Co-Ni-Cr-B-Si, Ni-Cu-B-Si);

оксиды Al , Ti , Cr , Zr и других металлов и их композиции;

бескислородные тугоплавкие соединения и твердые сплавы - карбиды Cr , Ti , W и др. и их композиции с Со и Ni ;

композиционные плакированные порошки - Ni -графит, Ni -А l и др.;

композиционные конгломерированные порошки- Ni - Al , NiCrBSi - Al
и др.;

механические смеси - Cr 3 C 2 + NiCr , NiCrBSi + Cr 3 C 2 и др.

В случае применения композиционных порошков в технологии газотермического напыления преследуют следующие цели:

использование экзотермического эффекта взаимодействия компонентов (Ni - Al , Ni - Ti и т. п.);

равномерное распределение компонентов в объеме покрытия, например, типа керметов (Ni - Al 2 0 3 и т. п.);

защита материала ядра частицы от окисления или разложения при напылении (Co - WC , Ni - TiC и т. п.):

формирование покрытия с участием материала, самостоятельно не образующего покрытия при газотермическом напылении (Ni -графит и т. п.);

улучшение условий формирования покрытий за счет увеличения средней плотности частиц, введение компонентов с высокой энтальпией.

Применяемые для напыления порошки не должны разлагаться или возгоняться в процессе напыления, а должны иметь достаточную разницу между температурами плавления и кипения (не менее 200 °С).

При выборе порошковых материалов для получения различных плазменных покрытий необходимо учитывать следующие положения.

Гранулометрический состав применяемых порошковых материалов имеет первостепенное значение, так как от него зависят производительность и коэффициент использования, а также свойства покрытий. Размер частиц порошка выбирают в зависимости от характеристик источника тепловой энергии, теплофизических свойств напыляемого материала и его плотности.

Обычно при напылении мелкодисперсного порошка получают более плотное покрытие, хотя в нем содержится большое количество оксидов, возникающих в результате нагрева частиц и их взаимодействия с высокотемпературным потоком плазмы. Чрезмерно крупные частицы не успевают прогреться, поэтому не образуют достаточно прочной связи с поверхностью и между собой или просто отскакивают при ударе. При напылении порошка, состоящего из смеси частиц разных диаметров, более мелкие частицы расплавляются в непосредственной близости от места их подачи в сопло, заплавляют отверстие и образуют наплывы, которые время от времени отрываются и в виде больших капель попадают на напыляемое покрытие, ухудшая его качество. Поэтому напыление предпочтительно следует производить порошками одной фракции, а все порошки перед напылением подвергать рассеиванию (классификации).

Для керамических материалов оптимальный размер частиц порошка 50-70 мкм, а для металлов - около 100 мкм. Порошки, предназначенные для напыления, должны иметь сферическую форму. Они обладают хорошей сыпучестью, что облегчает их транспортировку к плазмотрону.

Почти все порошки гигроскопичны и могут окисляться, поэтому их хранят в закрытой таре. Порошки, находившиеся некоторое время в открытой таре, перед напылением прокаливают в сушильном шкафу из нержавеющей стали слоем 5-10 мм при температуре 120-130 °С в течение 1,5-2 ч.

Порошок для напыления выбирают с учетом условий эксплуатации напыляемых деталей.

Возможными дефектами плазменно-дугового способа нанесения покрытий является отслоение напыленного слоя, растрескивание покрытия, появление на поверхности крупных капель материала покрытия, капель меди, а также разнотолщинность покрытия (выше допустимой).

С целью повышения адгезионной и когезионной прочностей и других качественных характеристик плазменные покрытия подвергают дополнительной обработке различными способами: обкатка роликами под током, очистка напыляемых поверхностей от окалины и удаление слабо сцепленных с основой или с предыдущим слоем частиц металлическими щетками в процессе самого напыления, струйно-абразивная и ультразвуковая обработка и др.

Одним из наиболее распространенных способов улучшения качества покрытий из самофлюсующихся сплавов является их оплавление. Для оплавления используют индукционный или печной нагрев, нагрев в расплавах солей или металлов, плазменный, газопламенный, лазерный и др. В большинстве случаев предпочтение отдают нагреву в индукторах токами высокой частоты (ТВЧ). Напыленные покрытия системы Ni - Cr - B - Si - C подвергают оплавлению при 920-1200 0 С с целью уменьшения исходной пористости, повышения твердости и прочности сцепления с металлом - основой.

Технологический процесс плазменного напыления состоит из предварительной очистки (любым известным методом), активационной обработки (например, абразивно-струйной) и непосредственно нанесения покрытия путем перемещения изделия относительно плазмотрона или наоборот.

Литература:

Лащенко Г.И. Плазменное упрочнение и напыление. – К.: «Екотехнолог i я», 2003 – 64 с.

Плазменная наплавка - инновационный метод нанесения на поверхность изношенных изделий специальных покрытий с высоким показателем износостойкости. Она выполняется для восстановления деталей машин и механизмов, а также при их производстве.

1 Плазменная наплавка – общая информация о методике и ее достоинства

Ряд узлов и механизмов разнообразных аппаратов и машин в наши дни функционируют в сложных условиях, требующих от изделий отвечать сразу нескольким требованиям. Зачастую они обязаны выдерживать влияние агрессивных химических сред и повышенных температур, и при этом сохранять свои высокие прочностные характеристики.

Изготовить подобные узлы из какого-либо одного металла или иного материала практически нереально. Да и с финансовой точки зрения столь сложный производственный процесс реализовывать нецелесообразно.

Намного разумнее и выгоднее выпускать такие изделия из одного, максимально прочного, материала, а затем наносить на них те или иные защитные покрытия – износостойкие, жаростойкие, кислотоупорные и так далее.

В качестве такой "защиты" можно использовать неметаллические и металлические покрытия, которые по своему составу отличаются друг от друга. Подобное напыление позволяет придавать изделиям необходимые им диэлектрические, тепловые, физические и иные характеристики. Одним из самых эффективных и при этом универсальных современных способов покрытия материалов защитным слоем признается напыление и наплавка плазменной дугой.

Суть применения плазмы достаточно проста. Для покрытия используется материал в виде проволоки либо гранулированного мелкого порошка, который подается в струю плазмы, где он сначала нагревается, а затем расплавляется. Именно в расплавленном состоянии защитный материал и попадает на деталь, подвергаемую наплавке. В то же самое время происходит и ее непрерывный нагрев.

Достоинства такой технологии таковы:

  • плазменный поток позволяет наносить разные по своим параметрам материалы, причем в несколько слоев (за счет этого металл можно обрабатывать разными покрытиями, каждый из которых имеет собственные защитные особенности);
  • энергетические свойства плазменной дуги допускается регулировать в широких границах, так как она считается самым гибким источником тепла;
  • поток плазмы характеризуется очень высокой температурой, благодаря чему он без труда расплавляет даже те материалы, которые описываются повышенной тугоплавкостью;
  • геометрические параметры и форма детали для наплавки не ограничивают технические возможности плазменного способа и не снижают его результативность.

Исходя из этого, можно сделать вывод о том, что ни вакуумный, ни гальванический, ни какой-либо другой вариант напыления не может сравниться по своей эффективности с плазменным. Чаще всего он используется для:

  • упрочнения изделий, которые подвергаются постоянным высоким нагрузкам;
  • предохранения от износа и ржавления элементов запорно-регулирующей и запорной (напыление металла при помощи плазмы в разы увеличивает их стойкость);
  • защиты от негативного влияния высоких температур, вызывающих преждевременный износ изделий, используемых стекольными предприятиями.

2 Технология описываемой наплавки и ее тонкости

Наплавка металла плазмой выполняется по двум технологиям:

  • в струю вводят пруток, проволоку либо ленту (они выполняют функцию присадочного материала);
  • в струю подают порошковую смесь, которая захватывается и переносится на поверхность наплавляемого изделия газом.

Струя плазмы может иметь разную компоновку. По этому показателю ее разделяют на три вида:

  • Закрытая струя. С ее помощью чаще всего выполняют напыление, металлизацию и закалку металла. Дуга в данном случае характеризуется сравнительно небольшой интенсивностью пламенного потока, что обуславливается высоким уровнем отдачи тепла в атмосферу. Анодом при описанной компоновке выступает либо канал горелки, либо ее сопло.
  • Открытая струя. При этой компоновке деталь нагревается намного больше, анодом является пруток или непосредственно обрабатываемое изделие. Открытая струя рекомендована для нанесения защитных слоев либо для резки материала.
  • Комбинированный вариант. Компоновка, созданная специально для выполнения плазменно-порошковой наплавки. При таком варианте одновременно зажигают две дуги, а анод подключат к соплу горелки и к наплавляемому изделию.

При любой компоновке в качестве газов, которые используются для образования пламени, применяют кислород, аргон, воздух, гелий, водород или азот. Специалисты утверждают, что максимально качественное напыление и наплавку металла обеспечивают гелий и аргон.

3 Комбинированный плазмотрон для наплавки

Плазменно-порошковая наплавка на большинстве современных предприятий осуществляется именно в комбинированных агрегатах. В них металлический присадочный порошок расплавляется между соплом горелки и электродом из вольфрама. А в то время, когда дуга горит между деталью и электродом, начинается нагрев поверхности наплавляемого изделия. За счет этого происходит качественное и быстрое сплавление основного и присадочного металла.

Комбинированный плазмотрон обеспечивает малое содержание в составе наплавленного основного материала, а также наименьшую глубину его проплавления. Именно данные факты и признаются главным технологическим достоинством наплавки при помощи плазменной струи.

От вредного влияния окружающего воздуха наплавляемая поверхность предохраняется инертным газом. Он поступает в сопло (наружное) установки и надежно защищает дугу, окружая ее. Транспортирующим газом с инертными характеристиками осуществляется и подача порошковой смеси для присадки. Она поступает из специального питателя.

В целом стандартный плазмотрон комбинированного типа действия, в котором производится напыление и наплавка металла, состоит из следующих частей:

  • два источника питания (один питает "косвенную" дугу, другой – "прямую");
  • питатель для смеси;
  • сопротивления (балластные);
  • отверстие, куда подается газ;
  • сопло;
  • осциллятор;
  • корпус горелки;
  • труба для подачи несущего порошковую композицию газа.

4 Основные особенности наплавки металла по плазменной технологии

Максимальная производительность плазмотрона отмечается тогда, когда применяется проволочная токоведушая присадка. Дуга в данном случае горит между этой проволокой (она является анодом) и катодом агрегата. Описанный метод незначительно проплавляет основной материал. Но он не дает возможности выполнить равномерный и тонкий наплавочный слой.

Если же используется порошок, напыление и наплавка позволяют получать указанный тонкий слой с максимальными показателями износостойкости и жаропрочности. Обычно составляющими порошковой смеси для наплавки являются кобальт и никель. После использования таких порошков поверхность детали нет нужды обрабатывать дополнительно, так как ее защитный слой не имеет никаких дефектов.

Плазменное напыление по сравнению с наплавкой описывается большей скоростью струи плазмы и более плотным тепловым потоком. Обусловлен этот факт тем, что при напылении чаще всего применяются металлы и соединения с высоким уровнем тугоплавкости (бориды, силициды, тантал, карбиды, вольфрам, оксиды циркония, магния и алюминия).

Добавим, что рассмотренный в статье метод наплавки по своим техническим характеристикам (интервал рабочих напряжений и токов, расход инертного газа и так далее) мало чем отличается от . А этот вид выполнения сварочных мероприятий специалисты освоили в наши дни в совершенстве.

НАНЕСЕНИЕ ПОЛИМЕРНЫХ ПОКРЫТИЙ.

КЛАССИФИКАЦИЯ МЕТОДОВ.

1. Полимерно-порошковое покрытие

2. Характеристики полимерно-порошкового покрытия

3. Нанесение полимерных покрытий

4. Классификация способов нанесения покрытий

5. Первая группа нанесения полимерных покрытий

5.1 Вихревое напыление (вибрационный, вибровихревой метод нанесения полимерных покрытий)

2 Пневматическое напыление

3 Беспламенное напыление

4 Центробежный метод распыления порошков

6. Вторая группа нанесения полимерных покрытий

6.1 Газопламенное напыление

2 Плазменное напыление

3 Теплолучевой метод

4 Экструзионный метод

5 Напыление в вакууме

7. Третья группа нанесения полимерных покрытий

7.1 Технология порошковой окраски электростатическим напылением - технология зарядки коронным разрядом

7.2 Трибостатическое напыление - зарядка трением

3 Нанесение покрытия в ионизированном псевдоожиженном слое

Заключение

СПИСОК ИСПОЛЬЗОВАННЫХ ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

НАНЕСЕНИЕ ПОЛИМЕРНЫХ ПОКРЫТИЙ. КЛАССИФИКАЦИЯ МЕТОДОВ.

1. Полимерно-порошковое покрытие

Полимерное покрытие - результат обработки поверхности порошковой краской. Последняя представляет собой специальный твердый состав, который при повышении температуры превращается в сплошную пленку, призванную защитить металлическое изделие от коррозии и придать ему эстетичный внешний вид.

Порошковое полимерное покрытие широко применяется сегодня при ремонтно-строительных работах. Оно идеально подходит для элементов фасада (кровли, оконных профилей, дверей, ограждений), спортивного, садово-паркового инвентаря, а также офисной мебели.

Полимерно-порошковое окрашивание было разработано в 1950-х гг. в США. В то время только лишь начинало формироваться автомобильное производство, которое одним из немногих имело честь протестировать новейший вид покраски. С тех пор прошло уже более 60 лет, и каждый человек может пользоваться порошково-полимерным покрытием металла каждый день, в том числе и у себя на кухне. Сегодня же по объему выпуска термоактивных порошковых ЛКМ лидирует не кто иной как Европа. В России обстановка несколько иная, потому как серийное производство подобный продукции началось только лишь с 1975 года. Теперь полимерно-порошковое окрашивание становится необычайно популярным, проникая во многие слои, раньше занятые традиционными лакокрасочными покрытиями.

Метод порошкового окрашивания является популярной альтернативой нанесению жидких лакокрасочных материалов для деталей, допускающих термообработку. Чаще всего слой порошково-полимерного состава на изделии составляет 0,3мм.

Порошковые краски - это твердые дисперсные композиции, в состав которых входят пленкообразующие смолы, отвердители, наполнители, пигменты и целевые добавки. Получают порошковые краски главным образом смешением компонентов в расплаве с последующим измельчением сплава до максимального размера частиц.

Порошковые краски своей популярностью обязаны отсутствию растворителей и содержанию веществ, гарантирующих непроницаемое для солей, кислот и влаги тонкослойное покрытие. При этом оно отвечает высоким стандартам качества, является абразивостойким и высокопрочным.

Повышенная устойчивость к механическим повреждениям гарантирует сохранность внешнего вида на протяжении всего срока службы окрашенного полимерно-порошковым покрытием металла.

Основное достоинство метода полимерно-порошкового окрашивания заключается в антикоррозийной защите металла. И получаемое покрытие обладает повышенной жаростойкостью, электроизоляционными свойствами, долговечностью, прочностью, экологичностью, сохраняет первоначальный колер и соответствует Европейским стандартам.

2. Характеристики полимерно-порошкового покрытия

Толщина покрытия 60...80мкм;

Высокая устойчивость к ультрафиолетовому излучению;

Минимальный радиус изгиба - 1T;

Возможность окраски в любой цвет.

Повышенная устойчивость к механическим повреждениям, что гарантирует сохранность внешнего вида на протяжении всего срока службы окрашенного металла;

Повышенная прочность на удар, изгиб, истираемость;

Высокая адгезия с окрашиваемой поверхностью;

Высокая антикоррозионная стойкость к воздействию влаги, растворов щелочей и кислот, органических растворителей;

Широкий рабочим диапазоном от -60 0С до +150 0С;

Непревзойденные эстетические характеристики: повышенная толщина полимерного покрытия позволяет маскировать незначительные дефекты поверхности.

Кроме того, у полимерной краски существуют множество поверхностных эффектов, которые позволяют добиваться безупречного внешнего вида готовых изделий без утомительной и долгой подготовки.

Порошково-полимерное покрытие устойчиво к атмосферной коррозии и может уверенно эксплуатироваться в условиях:

Промышленной атмосфере средней агрессивности сроком до 30 лет;

Слабоагрессивной атмосферы сроком до 45 лет;

Приморской городской атмосферы средней агрессивности сроком до 15 лет.

3. Нанесение полимерных покрытий

Технология нанесения полимерных порошковых красок - экологически чистая, безотходная технология получения высококачественных защитных и защитно-декоротивных полимерных покрытий. Покрытие формируют из полимерных порошков, которые напыляют на поверхность изделия, а затем в печи под определенной температурой проходит процесс термообработки (полимеризации).

Процесс нанесения покрытий практически всеми известными методами предполагает последовательную реализацию следующих основных этапов:

1. Очистку покрываемой поверхности от загрязнения, оксидных и годрооксидных слоев и проведение активационной обработки;

Нанесение полимерного материала на поверхность;

Закрепление полимерного материала на поверхности;

Заключительная обработка покрытия с целью достижения необходимых служебных свойств;

Контроль качества покрытия, оценка соответствия его свойств, геометрических параметров требуемым.

Полимерные покрытия, наносимые на поверхность твердого тела, используются для повышения служебных свойств изделий.

Качество покрытий зависит от строгого соблюдения технологических режимов всех стадий процесса.

Подготовка поверхности.

Для очистки поверхности от ржавчины, окалины, старых покрытий в основном используют механические и химические способы. Из механических способов наиболее распространение струйная абразивная обработка с применением дробеметных, дробеструйных и пескоструйных аппаратов.

В качестве обезжиривающих веществ применяют органические растворители, водные моющие (щелочные и кислые) растворы. Органические растворители (Уайт-спирит, 646) из-за вредности и огнеопасности применяют для обезжиривания способом ручной протирки х/б ветошью не оставляющей ворсы на поверхности изделий, ограниченно, главным образом при окрашивании небольших партий. Основной промышленный способ обезжиривания связан с использованием водных моющих составов - концентратов. В основном они представляют собой порошки. Обезжиривание проводят при 40-600С; продолжительность обработки окунанием 5-15 мин, распылением 1-5 мин. Большинство составов пригодно для обезжиривания как черных, так и цветных металлов (алюминий, медь, цинк и магниевые сплавы). Обезжиривание требует не только обработку моющим составом, но и последующую их промывку и сушку.

Химическое удаление оксидов основано на их растворении или отслаивании с помощью кислот (в случае черных металлов) или щелочей (для алюминия и его сплавов). Эта операция преследует цель улучшить защиту изделий, сделать ее более надежной и длительной. наиболее распространено фосфатирование черных металлов и оксидирование цветных, в первую очередь алюминия и его сплавов. Цветные металлы (алюминий, магний, их сплавы, цинк) для улучшения адгезии и защитных свойств покрытий оксидируют. Завершающей стадией получения конверсионных покрытий, как и любых операций мокрой подготовки поверхности, является сушка изделий от воды.

Подготовка порошкового материала и сжатого воздуха.

Порошковые полимерные материалы промышленного изготовления, у которых не истек срок годности, как правило, пригодны для получения покрытий без какой-либо подготовки. Исключения могут быть в тех случаях, когда нарушались условия хранения или транспортировки материала.

Наиболее типичные дефекты красок, связанные с их неправильным хранением: комкование, химическое старение; увлажнение сверх допустимой нормы. Рекомендуемая температура хранения порошковых красок не выше 30°С. Слежавшиеся краски, имеющие крупные или даже мелкие агрегаты, не пригодны для применения и требуют переработки - измельчения до требуемого размера частиц и просева. При малой агрегации частиц иногда ограничиваются просевом. Рекомендуемая ячейка сита для просеивания должна быть в пределах 150-200 мкм.

Химическому старению в наибольшей степени подвержены термореактивные краски с высокой реакционной способностью при несоблюдении условий их хранения. Краски, имеющие признаки химического старения, должны выбраковываться, их исправление практически невозможно. Краски с повышенной степенью увлажнения (что видно по их пониженной сыпучести, склонности к агрегации, плохой заряжаемости) подлежат - сушке при температуре не выше 35 0С на протвине слоем 2-3см. в течение 1-2 часов с периодическим перемешиванием краски.

Полимерные порошковые краски являются гигроскопичными и поглощают из окружающего воздуха пары воды в результате чего, краски плохо транспортируются по трубопроводу распылителей, распыляются, заряжаются (особенно касается трибостатического напыления). Подготовка сжатого воздуха заключается в его очистке от капельной влаги и масла с последующей осушкой от их паров. Воздух, используемый для распыления порошковых красок, должен удовлетворять следующим требованиям: содержание масла - не более 0,01 мг/м3; содержание влаги - не более 1,3 г/м3; точка росы - не выше 7°С; содержание пыли не более 1мг/м3. Подготовка осуществляется пропусканием сжатого воздуха через маслоуловители и установку осушки сжатого воздуха ОСВ-30, в котором освобождение от влаги сжатого воздуха достигается пропусканием последнего через слой сорбента забирающий из сжатого воздуха пары воды и масла. Регенерация сорбента осуществляется прокаливанием сорбента при температуре 120-150 0С в течение 2-3 часов с последующим охлаждением последнего. Срок использования сорбента около 5 лет.

4. Классификация способов нанесения покрытий

Все способы нанесения полимерных покрытий можно разделить на три группы.

I - группа - способы нанесения, осуществляемые путем напыления порошка на изделия, нагретого выше температуры плавления наносимого полимера:

а) вихревое напыление (нанесение в псевдоожиженном слое), вибрационный, вибровихревой;

б) пневматическое напыление;

в) безплазменное напыление;

г) центробежное напыление.

II - группа - способы нанесения, осуществляемые путем напыления расплавленных частиц порошкового полимера на поверхность нагретого изделия:

а) газоплазменное напыление;

б) теплолучевое напыление;

в) экструзионное напыление;

III - группа - способы нанесения, осуществляемые путем напыления электрически заряженных частиц порошка на поверхность противоположно заряженной поверхности:

а) электростатическое напыление - зарядка коронным зарядом в электрическом поле;

б) трибостатическое напыление;

в) нанесение покрытия в ионизированном псевдоожиженном слое.

Рассмотрим подробнее способы нанесения полимерных покрытий

5. Первая группа нанесения полимерных покрытий

1 Вихревое напыление (вибрационный, вибровихревой метод нанесения полимерных покрытий)

Является самым часто встречающимся методом нанесения порошковых покрытий.

Процесс вихревого напыления состоит в следующем: между основанием резервуара и агломерационной камерой располагается воздухо- или газопроницаемая плита из металлокерамики или же фильтр из синтетического материала (диаметр пор < 25 мкм). В агломерационную камеру загружается полимерный порошок. Размер частиц, образующихся в результате спекания порошков, составляет от 50 до 300 мкм. Для спекания в нижний отсек резервуара (основание резервуара) вдувается воздух, который, равномерно распределяясь при прохождении через пористую пластину, проникает в агломерационную камеру и создает «кипящий» слой порошка. Необходимое давление воздуха зависит от высоты «кипящего» слоя и плотности порошка и составляет от 2,6 до 2,0 бар. Необходимое количество воздуха равно от 80 до 100 м3 в час и на 1 м2 поверхности днища. Завихренный порошок ведет себя подобно жидкости (он «псевдоожижен»), поэтому предметы, на которые требуется нанести покрытие, могут быть легко в него погружены. Для расплавления порошка необходим предварительный нагрев металлических предметов, на которые предполагается нанести покрытие. Предварительный нагрев целесообразно осуществлять в сушильных печах с циркуляцией воздуха при температурах выше плавления соответствующего полимера (100-200 °С). До предварительного нагрева поверхность обезжиривается. Подготовленные и нагретые металлические изделия опускаются в кипящий слой порошка (рисунок 1). После нанесения покрытия охлаждение полиэфинов должно по возможности осуществляться медленно. Полимерное покрытие может быть доведено до зеркального блеска.

Рисунок 1. Схема установки для нанесения покрытий в псевдоожиженном слое:

Трубка для подвода воздуха, 2 - подвеска, 3 - корпус, 4 - ремонтируемая деталь, 5 - пористая перегородка, 6 - порошок

Преимущества:

1. за один цикл нанесения и последующего отверждения можно получить толстослойное покрытие, обладающее высокой антикоррозионной стойкостью;

2. при соблюдении технологического цикла нанесения можно регулировать равномерность толщины пленки;

Низкая первоначальная стоимость оборудования.

Недостатки:

1. для загрузки ванны необходимо большое количество порошка;

2. обрабатываемая деталь должна быть предварительно нагрета;

Этот метод нанесения используется только в тех случаях, когда необходимо получить толстослойное покрытие;

Окрашиваемые изделия должны быть простой формы.

При вибрационном методе для создания в рабочей зоне взвешенного слоя полимерного порошка установки снабжены вибраторами - механическими, электромагнитными или воздушными, заставляющими вибрировать корпус установки или соединенное с корпусом диафрагмой только дно ванны. Пористой перегородки камера не имеет. Широкого применения этот метод не получил, так как не обеспечивает равномерного покрытия из-за того, что при вибрации на поверхность взвешенного слоя поднимаются более крупные частицы порошка.

Сочетание вихревого метода с вибрационным носит название вибровихревого метода напыления, который обеспечивает однородную структуру и плотность взвешенного слоя, и применяется для нанесения порошков полимеров, обладающих плохой сыпучестью или слежавшихся.

В нижней части установки под ванной смонтированы электромагнитный вибратор и мембрана с частотой 10-100 колебаний в секунду. На частицы порошка одновременно действуют вибрация и потоки воздуха, что обеспечивает равномерный слой покрытия. Метод предназначен для нанесения защитных и декоративных покрытий.

5.2 Пневматическое напыление

Этот метод нанесения покрытий заключается в напылении пневматическим распылителем порошкового материала на поверхность предварительно нагретого изделия. Метод позволяем наносить покрытия на изделия разного габаритного размера и конфигурации с использованием небольшого количества порошка. .

Основные достоинства способа высокая производительность, простота конструктивного исполнения и универсальность Недостатками метода являются необходимость предварительного нагрева изделий, весьма значительные (до 50%) потери распыляемого материала, невозможность получения равномерных покрытий по толщине пленки, особенно при наличии острых кромок и невертикальных плоскостей.

Все установки для пневматического напыления порошковых полимеров состоят из питателя и распыляющих головок, которые снабжены приборами и аппаратурой для регулирования и контроля процесса нанесения покрытий. Питатель предназначен для подачи в распыляющую головку воздушно-порошковой взвеси. Посредством головки распылителя порошок направляется на покрываемую поверхность.

На рис. 106, а-д показаны сменные насадки пистолета-распылителя для нанесения порошковых материалов. Пистолет работает по принципу эжекционного подсоса порошка. Расход подаваемого воздуха регулируется иглой, воздушно-порошковая смесь подается к пистолету от питателя.

3 Беспламенное напыление

Порошкообразный полимер в смеси с воздухом через распыляющую головку наносится на предварительно очищенную нагретую поверхность изделия. По сравнению с методом газопламенного напыления здесь применяется простая конструкция распылительной головки и возможность напыление изделий различных конструкций и размеров при небольшом количестве порошка. Беспламенное напыление применяется для покрытия наружных и внутренних поверхносте труб различных диаметров длиной до 12м.

5.4 Центробежный метод распыления порошков

Для нанесения покрытий на внутренние поверхности труб, емкостей, сосудов цилиндрической формы получил распространение центробежный способ получения покрытий, заключающийся в нанесении порошка на нагретые изделия при одновременном их вращении.

Порошок из дозирующего устройства поступает на диски, вращающиеся в горизонтальной плоскости в противоположных направлениях. Порошок на дисках распыляется под действием центробежных сил, образуя плоскую струю.

6. Вторая группа нанесения полимерных покрытий

1 Газопламенное напыление

полимерный покрытие порошковый напыление

Сущность процесса газопламенного нанесения полимерного покрытия состоит в том, что струю сжатого воздуха с взвешенными в ней частицами порошка пропускают через факел ацетилено-воздушного пламени. В пламени частицы порошка нагреваются, размягчаются и, ударяясь в предварительно подготовленную и нагретую поверхность, прилипают к ней, образуя сплошное покрытие. В ремонтной практике нанесение полимерных покрытий газопламенным способом применяют для выравнивания сварных швов и неровностей на поверхностях кабин и деталей оперения автомобилей, тракторов, комбайнов.

Материал для напыления - пластмасса ПФН-12 (МРТУ6-05-1129-68); ТПФ-37 (СТУ12-10212-62). Порошок из этих материалов перед использованием должен быть просеян через сито с сеткой № 016... 025 (ГОСТ 3584-53) и при необходимости просушен при температуре не более 60°С в течение 5...6ч, а затем просеян.

Рисунок 2. Схема газопламенного напыления через горелку-распылитель.

Перед нанесением покрытия газопламенным способом поврежденные поверхности с вмятинами и неровностями должны быть выправлены, а трещины и пробоины заварены. Поверхность сварных швов должна быть зачищена шлифовальной машинкой до удаления острых углов и кромок. Поверхности вокруг сварных швов и неровностей зачищают до металлического блеска. Подготовленная поверхность не должна иметь окалины, ржавчины и загрязнений. Нанесение покрытия производится с помощью установки УПН-6-63. Вначале пламенем горелки нагревают поврежденную поверхность до температуры 220... 230 °С. При этом скорость перемещения горелки составляет 1,2... 1,6 м/мин; давление ацетилена- не ниже 0,1004 МПа; давление сжатого воздуха- 0,3... 0,6 МПа; расстояние от мундштука до нагреваемой поверхности- 100... 120 мм. Затем, не выключая пламени горелки, открывают вентиль подачи порошка. Порошок наносят на нагретую поверхность за два-три прохода горелки. Через 5...8 с после напыления нанесенный слой пластмассы прикатывают роликом, смоченным холодной водой. Прикатанную поверхность пластмассы прогревают пламенем горелки в течение 5...8 с, на нагретое покрытие наносят второй слой порошка за два-три прохода и снова прикатывают роликом. Напыленную поверхность зачищают шлифовальной машинкой так, чтобы переход от поверхности металла к напыленному слою был равномерным.

Для газопламенного (термического) порошкового окрашивания не требуется заряжать изделие и частицы порошка для создания электростатического поля. Это означает, что окрашивать можно практически любую поверхность: не только металлы, но и пластики, стекло, керамику, дерево и многие другие материалы, которые бы деформировались или сгорели в камере полимеризации.

Газопламенная покраска исключает необходимость использовать громоздкие печи и камеры полимеризации, и выводит порошковую покраску на новые рубежи применения данной технологии, поскольку оборудование для распыления является портативным и универсальным. Его также используют не только для нагревания поверхности, напыления порошка, а и для повторного нагрева с целью выравнивания поверхности.

Среди недостатков данной технологии - это то, что покрытия не всегда имеют ровную поверхность, и их значение скорее функциональное, нежели декоративное. Но для таких объектов как мосты, корпуса кораблей или водонаборные башни важнее защита от коррозии и ржавчины, чем незначительная неровность в покрытии.

6.2 Плазменное напыление

Сущность способа состоит в переносе порошкового материала на поверхность изделия высокотемпературным потоком плазмы, которая образуется в результате частичной ионизации инертного газа (аргон, гелий или смесь гелия с азотом) при пропускании его через электрическую дугу при температуре от 3000 до 80000С.

При введении порошкового материала в поток плазмы порошок плавится и вместе с плазменным газом наносится на поверхность изделия. Нанесение порошковых материалов этим способом осуществляется вручную с помощью плазменного распылителя. Установка включает распылитель, трансформатор-выпрямитель, устройство для управления потоков газа, емкость для материала. В связи с тем, что наносить плазменным распылением можно только порошковые материалы с узким диапазоном дисперсного распределения частиц порошка и выдерживающих нагрев порядка 3500С (к таким полимерам относятся фторопласты, полиамиды), этот способ, несмотря на свои преимущества (высокая производительность, безвредность и др.), не нашел широкого применения в промышленности .

6.3 Теплолучевой метод

Более производителен и универсален по сравнению с газопламенным методом. Порошкообразный термопластичный материал подается в зону мощного теплового потока, где материал расплавляется и наносится на поверхность изделия. Воздушно-порошковая смесь образуется в вировихревом аппарате и направляется на изделие. Этот метод более эффективен, чем пламенный, сокращает потребление порошка и имеет меньшую энергоемкость. Покрытие имеет более высокие физико-механические характеристики и лучшую адгезию к поверхности изделия. Недостатками метода является значительные потери порошка и загрязнение воздуха.

6.4 Экструзионный метод

Для нанесения покрытий из термопластичных полимерных материалов на электрические провода, кабели, стальные трубы, на деревянные планки и другие полуфабрикаты применяются экструзионные линии на базе одночервячных пластицирующих экструдеров, причем широкое использование получили экструзионные агрегаты в кабельной промышленности. Например, для техники связи медные провода диаметром 0,4-1,4 мм покрываются полиэтиленовой или поливинилхлоридной пленкой толщиной 0,15-0,25 мм; для низкочастотной техники применяются покрытия из ПВХ; для кабелей диаметром 20-120 мм применяются покрытия из ПЭВП толщиной 4-25 мм. .

<#"809022.files/image004.gif"> <#"809022.files/image005.gif">

Рисунок 5. Нанесение покрытия с помощью распылителя

Его популярность обусловлена следующими факторами: высокая эффективность зарядки почти всех порошковых красок, высокая производительность при порошковом окрашивании больших поверхностей, относительно низкая чувствительность к влажности окружающего воздуха, подходит для нанесения различных порошковых покрытий со специальными эффектами (металлики, шагрени, мауары и т.д.).

Рисунок 6. Движения ионов коронного разряда в электрическом поле и осаждения их на поверхность частиц («ударная зарядка»).

Наряду с достоинствами электростатическое напыление имеет ряд недостатков, которые обусловлены сильным электрическим полем между пистолетом распылителем и деталью, которое может затруднить нанесение порошкового покрытия в углах и в местах глубоких выемок. Кроме того, неправильный выбор электростатических параметров распылителя и расстояния от распылителя до детали может вызвать обратную ионизацию и ухудшить качество полимерного порошкового покрытия.

Оборудование для порошковой окраски - электростатический пистолет распылитель есть типовом комплексе порошковой окраски Антанта.

Рисунок 7. Эффект клетки Фарадея

Эффект клетки Фарадея - результат воздействия электростатических и аэродинамических сил.

На рисунке показано, что при нанесении порошкового покрытия на участки, в которых действует эффект клетки Фарадея, электрическое поле, создаваемое распылителем, имеет максимальную напряженность по краям выемки. Силовые линии всегда идут к самой близкой заземленной точке и скорее концентрируется по краям выемки и выступающим участками, а не проникают дальше внутрь.

Это сильное поле ускоряет оседание частик, образуя в этих местах порошковое покрытие слишком большой толщины.

Эффект клетки Фарадея наблюдается в тех случаях, когда наносят порошковую краску на металлоизделия сложной конфигурации, куда внешнее электрическое поле не проникает, поэтому нанесение ровного покрытия на детали затруднено и в некоторых случаях даже невозможно.

Обратная ионизация

Рисунок 8. Обратная ионизация

Обратная ионизация вызывается излишним током свободных ионов от зарядных электродов распылителя. Когда свободные ионы попадают на покрытую порошковой краской поверхность детали, они прибавляют свой заряд к заряду, накопившемуся в слое порошка. Но поверхности детали накапливается слишком большой заряд. В некоторых точках величина заряда превышается настолько, что в толще порошка проскакивают микро искры, образующие кратеры на поверхности, что приводит к ухудшению качества покрытия и нарушению его функциональных свойств. Также обратная ионизация способствует образованию апельсиновой корки, снижению эффективности работы распылителей и ограничению толщины получаемых покрытий.

Для уменьшения эффекта клетки Фарадея и обратной ионизации было разработано специальное оборудование, которое уменьшает количество ионов в ионизированном воздухе, когда заряженные частицы порошка притягиваются поверхностью. Свободные отрицательные ионы отводятся в сторону благодаря заземлению самого распылителя, что значительно снижает проявление вышеупомянутых негативных эффектов. Увеличив расстояние между распылителем и поверхностью детали, можно уменьшить ток пистолета распылителя и замедлить процесс обратной ионизации.

7.2 Трибостатическое напыление - зарядка трением

Статическая электризация осуществляется путем обмена зарядами за счет разности в работе выхода электронов у материала частиц и материала стенок в зарядном устройстве или при обмене зарядами между частицами из-за различий в химическом составе примесей, температуре, фазовом состоянии, структуре поверхности и т.д.

Рисунок 9. Триботехническое напыление

В отличие от электростатического напыления, в данной системе нет генератора высокого напряжения для распылителя. Порошок заряжается в процессе трения.

Главная задача - увеличить число и силу столкновений между частицами порошка и заряжающими поверхностями пистолета распылителя.

Одним из лучших акцепторов в трибоэлектрическом ряду является политетрафторэтилен (тефлон), он обеспечивает хорошую зарядку большинства порошковых красок, имеет относительно высокую износоустойчивость и устойчив к налипанию частиц под действием ударов.

Рисунок 10. Отсутствие эффекта клетки Фарадея

В распылителях с трибостатической зарядкой не создается ни сильного электрического поля, ни ионного тока, поэтому отсутствует эффект клетки Фарадея и обратной ионизации. Заряженные частицы могут проникать в глубокие скрытые проемы и равномерно прокрашивать изделия сложной конфигурации.

Также возможно нанесение нескольких слоев краски для получения толстых порошковых покрытий.

Зарядные устройства трибоэлектрических распылителей должны удовлетворять следующим трем условиям необходимым для эффективной зарядки напыляемого материала:

обеспечивать многократные и эффективные соударения частиц порошка с трибоэлектризующим элементом;

производить снятие поверхностного заряда с трибоэлектризующего элемента;

обеспечивать стабильность процесса трибозарядки.

Распылители с использованием трибостатической зарядки конструктивно более надежны, чем пистолеты распылители с зарядкой в поле коронного разряда, поскольку они не имеют элементов, преобразующих высокое напряжение. За исключением провода заземления, эти распылители являются полностью механическими, чувствительными только к естественному износу.

7.3 Нанесение покрытия в ионизированном псевдоожиженном слое

Устройство для нанесения покрытий представляет собой камеру с электрическим кипящим слоем, в которую помещается изделие - 1 (рисунок 5). Камера делится пористой перегородкой - 2 на две части. В верхнюю часть на пористую перегородку насыпается порошковый материал - 3, а в нижнюю - подается сжатый воздух.

Рисунок 11. Нанесение покрытия в камере с кипящим слоем

При определенной скорости воздуха, проходящего через пористую перегородку, порошок переводится во взвешенное состояние, при котором частицы как бы витают в восходящем потоке воздуха. Из-за хаотичности движения частиц происходит их соударение между собой, что приводит к статической электризации частиц и зарядка их как отрицательным, так и положительным зарядом.

Электрическое поле, создаваемое между высоковольтным электродом, размещенным в порошковом слое, и заземленным изделием, вызывает разделение частиц в кипящем слое по знакам заряда. При приложении отрицательного напряжения к высоковольтным электродам положительно заряженные частицы накапливаются вокруг высоковольтного электрода, а отрицательно заряженные - в верхней части кипящего слоя порошка. Частицы, имеющие достаточно большой отрицательный заряд, выносятся электрическим полем из кипящего слоя и направляются к изделию. Из-за большой концентрации частиц в кипящем слое коронный разряд у поверхности высоковольтных электродов находится в полностью запертом состоянии. По мере накопления положительно заряженных частиц вокруг высоковольтных электродов происходит разряд и импульсное локальное отпирание коронного разряда, при котором осуществляется перезарядка частиц. Таким образом, в электрическом кипящем слое зарядка частиц носит сложный характер, сочетающий статическую электризацию частиц и зарядку в газовом разряде.

Процесс транспортировки частиц порошка к напыляемому изделию осуществляется в потоке воздуха. При этом соотношение аэродинамических и электрических сил, действующих на частицу, сильно отличается для разных устройств, используемых для нанесения покрытий. Если для распылителей с внутренней зарядкой транспортировка частиц осуществляется исключительно потоком воздуха, то в камерах с электрическим кипящим слоем направление движения частиц к изделию создается в основном электрическим полем. Для распылителей с внешней зарядкой перемещение частиц к изделию в равной мере определяется аэродинамическими и электрическими силами.

Способ нанесения покрытий из порошковых материалов в электростатическом поле имеет существенные преимущества перед всеми вышеупомянутыми способами:

Отсутствие предварительного нагрева;

Снижение потерь порошкового материала;

Возможность получения равномерных по толщине покрытий на изделиях сложной конфигурации;

Возможность автоматизации процесса напыления;

Универсальность и высокая производительность;

Экологическая чистота;

Сведение к минимуму пожаро- и взрывоопасность.

Эти факторы определили широкое распространение технологии нанесения полимерных покрытий в электростатическом поле.

Заключение

Нанесение полимерных покрытий является довольно сложным технологическим процессом, который может быть использован как для защиты различных видов материалов от неблагоприятных воздействий окружающей среды, так и для придания привлекательного внешнего вида различным товарам. .

Как правило, нанесение полимерных покрытий осуществляется с помощью специализированного оборудования в помещениях, где поддерживаются определенные показатели внутренней среды. В настоящее время существует множество технологических методик нанесения полимерных покрытий на различные виды материалов.

Наиболее популярными технологиями, которые используются при нанесении различных видов полимерных покрытий являются газопламенный и вихревой методы, вибрационный и вибровихревой способ, нанесение покрытий в электостатическом поле, а также применение различных видов суспензий, эмульсий и гуммировочных составов для обработки поверхностей.

Как правило, нанесение полимерных покрытий производится в процессе производства материалов или готовых изделий, но в некоторых случаях данный вид покрытий может наноситься, например, на автомашину, которая уже несколько лет эксплуатировалась владельцем.

Каждая технология нанесения полимерных покрытий имеет свои особенности, которые могут быть связаны как с процессом адгезии полимерного материала, так и со способом нанесения полимера. В любом случае, перед покрытием с помощью полимера любого изделия необходимо тщательно подготовить его поверхность, удалив грязь, старый слой краски или иные шероховатости. .

Кроме того, при проведении работ по нанесению полимера на поверхность любого материала необходимо четко соблюдать технологию данного процесса, в некоторых случаях температура, при которой происходит нанесения покрытия, может достигать несколько сот градусов. Также необходимо отметить, что в помещении, где производятся подобные работы, должна быть идеальная чистота, так как пыль и другие частицы могут привести к растрескиванию полимерного покрытия с течением времени.

При работе на оборудовании для нанесения полимерных покрытий необходимо тщательно соблюдать меры предосторожности, так как существует возможность получения серьезной травмы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

Паниматченко А.Д. Переработка пластмасс, изд. Профессия, Спб 2005.

Карякина М.И., Попцов В.Е. Технология полимерных покрытий: Учебное пособие для техникумов. - М.: Химия, 1983 - 336с., ил.

Яковлев А.Д., Здор В.Ф., Каплан В.И. Порошковые полимерные материалы и покрытия на их основе. Л., Химия, 1979. 254 с.

4. Майссела Л. и Глэнга Р. Технология тонких пленок: Справочник/Под ред. Пер. с англ.; Под ред. Елинсона М. И., Смолко. Г. Г. - М.: Советское радио, 1977. -Т. 1. - 406 с.; Т. 2. - 353 с.

Липин Ю.В., Рогачев А.В., Сидорский С.С., Харитонов В.В. Технология вакуумной металлизации полимерных материалов- Гомель, 1994. -206 с.

Ройх И.Л., Калтунова Л. Н. Защитные вакуумные покрытия на стали. М.: Машиностроение, 1971. - 280 с.

7. Брук М.А., Павлов С.А. Полимеризация на поверхности твердых тел. - М.: Химия, 1990. - 130 с.

Ясуда Х. Полимеризация в плазме. - М.: Мир, 1988. - 376 с.

Красовский А.М., Толстопятов Е.М. Получение тонких пленок распылением полимеров в вакууме/ Под ред. Белого В.А.- Мн.: Наука и техника, 1989. - 181 с.

Производство металлических изделий модернизируется по мере развития передовых технологий. Металл в большей степени подвержен воздействию влаги, поэтому для обеспечения высокого срока эксплуатации и придания деталям, рабочим механизмам и поверхностям требуемых свойств, в современной промышленности широко используют напыление металлов. Технология порошковой обработки заключается в нанесении на базовую металлическую основу защитного слоя, обеспечивающего высокие антикоррозийные характеристики напыляемых изделий.

Металлическая поверхность после порошковой обработки приобретает важные защитные свойства. В зависимости от назначения и области применения, металлическим деталям придают огнеупорные, антикоррозийные, износостойкие характеристики.

Основная цель напыления базовой основы из металла – обеспечить продолжительный эксплуатационный ресурс деталей и механизмов в результате воздействия вибрационных процессов, высоких температур, знакопеременных нагрузок, влияния агрессивных сред.

Процессы напыления металлов выполняют несколькими способами:

  • Вакуумная обработка – материал при сильном нагревании в вакуумной среде преобразуется в пар, который в процессе конденсации осаживается на обрабатываемой поверхности.
  • Плазменное или газоплазменное напыление металла – в основу метода обработки положено использование электродуги, образующейся между парой электродов с нагнетанием инертного газа и ионизацией.
  • Газодинамический способ обработки – защитное покрытие образуется при контакте и взаимодействии микрочастиц холодного металла, скорость которых увеличена ультразвуковой струей газа, с подложкой.
  • Напыление лазерным лучом – генерация процесса происходит с использованием оптико-квантового оборудования. Локальное лазерное излучение позволяет проводить обработку сложных деталей.
  • Магнетронное напыление – выполняется при воздействии катодного распыления в плазменной среде для нанесения на поверхность тонких пленок. В технологии магнетронных способов обработки используются магнетроны.
  • Защита металлических поверхностей ионно-плазменным способом – основана на распылении материалов в вакуумной среде с образованием конденсата и осаждением его на обрабатываемой основе. Вакуумный метод не дает металлам нагреваться и деформироваться.

Технологический метод напыления деталей, механизмов, поверхностей из металла подбирают, в зависимости от характеристик, которые нужно придать напыляемой основе. Поскольку метод объемного легирования экономически затратный, в промышленных масштабах широко используют передовые технологии лазерной, плазменной, вакуумной металлизации.

Напыление в магнетронных установках

Металлизация поверхностей по технологии магнетронного напыления основана на расплавлении металла, из которого выполнена мишень магнетрона. Обработка происходит в процессе ударного действия ионами рабочей газовой среды, сформированными в плазме разряда. Особенности использования магнетронных установок:

  • Основными элементами рабочей системы являются катод, анод, магнитная среда, которая способствует локализации плазменной струи у поверхности распыляемой мишени.
  • Действие магнитной системы активизирует использование магнитов постоянного поля (самарий-кобальт, неодим), установленных на основании из магнитомягких материалов.
  • При подаче напряжения от источника электропитания на катод ионной установки происходит распыление мишени, причем силу тока нужно поддерживать на стабильно высоком уровне.
  • Магнетронный процесс основан на использовании рабочей среды, которой выступает соединение инертных и реакционных газов высокой чистоты, подающихся в камеру вакуумного оборудования под давлением.

Преимущества магнетронного напыления позволяют применять данную технологию обработки для получения тонких пленок металлов. Например, алюминиевые, медные, золотые, серебряные изделия. Происходит формирование пленок полупроводников – кремний, германий, карбид кремния, арсенид галлия, а также образование покрытий диэлектриков.

Главное достоинство магнетронного метода – высокая скорость распыления мишени, осаждения частиц, точность воспроизведения химического состава, отсутствие перегрева обрабатываемой детали, равномерность нанесенного покрытия.

Использование при напылении магнетронного оборудования дает возможность обрабатывать металлы и полупроводники с высокой скоростью осаждения частиц, создавать на напыляемой поверхности тонкие пленки с плотной кристаллической структурой, высокими адгезивными свойствами. К основному перечню работ по магнетронной металлизации относятся хромирование, никелирование, реактивное напыление оксидов, карбо- и оксинитридов, сверхскоростная наплавка меди.

Технология ионно-плазменной наплавки

Чтобы получать многомикронные покрытия на изделиях из металла, широко используют метод ионно-плазменного напыления. Он основан на использовании вакуумной среды и физико-химических свойств материалов испаряться и распыляться в безвоздушном пространстве.

Технологически сложный процесс позволяет решать важные технические задачи по металлизации изделий благодаря использованию установки ионно-плазменного напыления:

  • Увеличение параметров износоустойчивости, исключение спекания при эксплуатации изделий в условиях высоких температур.
  • Повышение коррозийной устойчивости металлов при эксплуатации в агрессивных водных, химических средах.
  • Придание электромагнитных свойств и характеристик, эксплуатация в границах инфракрасного и оптического диапазона.
  • Получение высококачественных гальванических покрытий, придание изделиям декоративно-защитных свойств, обработки деталей и механизмов, используемых в разных отраслях промышленности.

Процесс ионно-плазменного напыления базируется на использовании вакуумной среды. После поджига катода формируются пятна первого и второго уровня, которые перемещаются с высокой скоростью и образуют плазменную струю в ионном слое. Полученная в результате эродирования катодов струя проходит через вакуумную среду и вступает во взаимодействие с конденсируемыми поверхностями, осаживаясь плотнокристаллическим покрытием.

Использование ионно-плазменного напыления позволяет наносить защитные покрытия при температуре поджига катода до 100°C, отличается достаточно простой схемой получения слоев толщиной до 20 мкм.

С помощью ионно-плазменного напыления на металл удается придавать требуемые свойства конструктивно сложным изделиям нестандартной геометрической формы. После обработки металлическую поверхность не требуется покрывать финишным слоем.

Особенности плазменной металлизации

Наряду с ионно-плазменным напылением и магнетронными способами обработки металлов применяют еще один метод – плазменная металлизация. Главная задача технологии – защита изделий от окислительных процессов в агрессивных средах, повышение эксплуатационных качеств, упрочнение обрабатываемой поверхности, усиление сопротивляемости механическим нагрузкам.

Плазменное напыление алюминия и других металлов основано на высокоскоростном разгоне металлического порошка в потоке плазмы с осаждением микрочастиц в виде покрывающего слоя.

Особенности и преимущества технологии плазменного напыления на металл:

  • Высокотемпературный метод нанесения защитного слоя на обрабатываемую поверхность (порядка 5000-6000 °C) происходит за доли секунд.
  • Используя методы регулирования газового состава, можно получать комбинированное насыщение металлической поверхности атомами порошковых покрытий.
  • Благодаря равномерности потока плазменной струи удается получать одинаково пористое, качественное покрытие. Конечная продукция превосходит результаты традиционных способов металлизации.
  • Длительность процесса напыления невысока, что помогает достичь стопроцентной экономической эффективности использования плазменного оборудования в разных производственных масштабах.

Основные компоненты рабочей установки – высокочастотный генератор, камера герметизации, резервуар газовой среды, насосная установка для подачи давления, система управления. Использовать технологию плазменного напыления на металл допускается в домашних условиях при наличии необходимого оборудования с вакуумной камерой – воздействие кислорода приводит к окислению горячих металлических поверхностей и мишени.

На видео: восстановление деталей напылением.

Процесс лазерной обработки

Наплавка металлов лазерным методом позволяет восстанавливать детали и механизмы потоками света, генерируемыми от оптико-квантового оборудования. Вакуумное напыление лазером является одним из наиболее перспективных методов получения наноструктурированных пленок. В основу процесса положено распыление мишени световым лучом с последующим осаждением частиц на подложке.

Преимущества технологии: простота реализации металлизации, равномерное испарение химических элементов, получение пленочных покрытий с заданным стехиометрическим составом. Благодаря узкой направленности лазерного потока в месте его сосредоточения удается получить наплавку изделия любыми металлами.

Механизмы формирования жидкокапельных фаз:

  • Крупные капли частиц расплавленной мишени образуются путем воздействия гидродинамического механизма. При этом диаметр крупных капель варьируется в диапазоне 1-100 мкм.
  • Капли среднего размера формируются вследствие процессов объемного парообразования. Размер капель колеблется в диапазоне 0,01-1 мкм.
  • При воздействии на мишень коротких и частых импульсов лазерного луча в эрозийном факеле образуются частицы мишени небольшой величины – 40-60 нм.

Если в лазерной установке при наплавке металлов на мишень одновременно действуют все три механизма рабочего процесса (гидродинамика, парообразование, высокочастотный импульс), приобретение изделием требуемых характеристик зависит от величины влияния конкретного механизма наплавки.

Одно из условий качественной лазерной обработки – воздействие на мишень таким режимом облучения, чтобы на выходе получить лазерные факелы с наименьшим включением жидкокапельных частиц.

Оборудование для холодного напыления

Существует два варианта защиты металлов от негативного воздействия внешних и рабочих факторов – легирование и напыление с вакуумным оборудованием. То есть, в сплав добавляют атомы химических элементов, придающих изделиям требуемые характеристики, или наносят на базовую поверхность защитное покрытие.

Чаще всего в отрасли металлизации используют технологию нанесения гальванических покрытий, применяют методы погружения деталей в расплав, задействуют в процессах обработки вакуумную среду, пользуются магнетронным оборудованием.

Иногда используют детонационно-газовое напыление, которое разгоняет частицы до невероятных скоростей. Широко применяют плазмотроны, электродуговую металлизацию, газопламенную обработку, ионное напыление. Задачи промышленности диктуют свои условия, и перед инженерами возникла необходимость создать недорогое, простое в обращении оборудование, для которого можно использовать свойства нагретого сжатого воздуха.

Появилось понятие порошковой металлизации с добавлением в металлический порошок мелкодисперсионной керамики либо частиц твердого металла. Используется для работы с алюминием, никелем, медью.

Результат экспериментов превзошел ожидания, позволив решить следующие задачи:

  • Нагревание сжатого воздуха в камере приводит к повышению давления, что вызывает увеличение скорости вытекания наплава из сопла в установках.
  • При наборе металлическими частицами в газовой среде высокой скорости они ударяются о подложку, размягчаются и прикипают к ней. А керамические частицы уплотняют образовавшийся слой.
  • Использование порошковой технологии подходит для металлизации пластичных металлов – медь, алюминий, никель, цинк. После напыления изделия можно поддавать механической обработке.

Благодаря успешной работе инженеров удалось создать переносной аппарат, позволяющий выполнять металлизацию покрытий на всех промышленных предприятиях и в домашних условиях. Требования для успешной работы оборудования – наличие компрессорной установки (или воздушной сети) с давлением сжатого воздуха в пять-шесть атмосфер и электропитание.

В таблице ниже приведены данные для хромирования алюминия в домашних условиях. Перед нанесением гальванического покрытия требуется «положить» на деталь промежуточный металлический слой, а потом выполнять напыление алюминия.

Таблица 1. Хромирование алюминия

Использование передового оборудования для металлизации изделий позволяет решить технические вопросы, связанные с повышением антикоррозийных, прочностных, эксплуатационных характеристик, а также приданием машинам, деталям и механизмам требуемых свойств для работы в сложных эксплуатационных условиях.

Лазерная сварка (2 видео)

Процесс напыления и рабочие установки (24 фото)