Параллельное соединение переменного и постоянного резисторов. Наука техника технологии. Растягиваем диапазон регулировки. Грубая настройка, точная подстройка. Схемы растягивания. Способы настроить. Методы подстроить Переменный резистор для изменения напря

Вроде бы простая деталька, чего тут может быть сложного? Ан нет! Есть в использовании этой штуки пара хитростей. Конструктивно переменный резистор устроен также как и нарисован на схеме - полоска из материала с сопротивлением, к краям припаяны контакты, но есть еще подвижный третий вывод, который может принимать любое положение на этой полоске, деля сопротивление на части. Может служить как перестариваемым делителем напряжения (потенциометром) так и переменным резистором - если нужно просто менять сопротивление.

Хитрость конструктивная:
Допустим, нам надо сделать переменное сопротивление. Выводов нам надо два, а у девайса их три. Вроде бы напрашивается очевидная вещь - не использовать один крайний вывод, а пользоваться только средним и вторым крайним. Плохая идея! Почему? Да просто в момент движения по полоске подвижный контакт может подпрыгивать, подрагивать и всячески терять контакт с поверхностью. При этом сопротивление нашего переменного резистора становится под бесконечность, вызывая помехи при настройке, искрение и выгорание графитовой дорожки резистора, вывод настраимого девайса из допустимого режима настройки, что может быть фатально.
Решение? Соединить крайний вывод с средним. В этом случае, худшее что ждет девайс - кратковременное появление максимального сопротивления, но не обрыв.

Борьба с предельными значениями.
Если переменным резистором регулируется ток, например питание светодиода, то при выведении в крайнее положение мы можем вывести сопротивление в ноль, а это по сути дела отстутствие резистора - светодиод обуглится и сгорит. Так что нужно вводить дополнительный резистор, задающий минимально допустимое сопротивление. Причем тут есть два решения - очевидное и красивое:) Очевидное понятно в своей простоте, а красивое замечательно тем, что у нас не меняется максимально возможное сопротивление, при невозможности вывести движок на ноль. При крайне верхнем положении движка сопротивление будет равно (R1*R2)/(R1+R2) - минимальное сопротивление. А в крайне нижнем будет равно R1 - тому которое мы и рассчитали, и не надо делать поправку на добавочный резистор. Красиво же! :)

Если надо воткнуть ограничение по обеим сторонам, то просто вставляем по постоянному резистору сверху и снизу. Просто и эффективно. Заодно можно и получить увеличение точности, по принципу приведенному ниже.

Порой бывает нужно регулировать сопротивление на много кОм, но регулировать совсем чуть чуть - на доли процента. Чтобы не ловить отверткой эти микроградусы поворта движка на большом резисторе, то ставят два переменника. Один на большое сопротивление, а второй на маленькое, равное величине предполагаемой регулировки. В итоге мы имеем две крутилки - одна «Грубо » вторая «Точно » Большой выставляем примерное значение, а потом мелкой добиваем его до кондиции.

Обозначения, параметры. Электрические сопротивления широко используются в радио и электронных приборах. В электротехнике электрические сопротивления принято называть РЕЗИСТОРЫ. Мы знаем, что электрические сопротивления измеряются в единицах которые называются Ом. На практике часто нужны бывают сопротивления в тысячи, а то и миллионы Ом. Поэтому для обозначения сопротивлений приняты следующие размерные единицы:

Основное назначение резисторов - создавать необходимые токи или напряжения для нормального функционирования электронных схем.
Рассмотрим схему применения резисторов, например, для получения заданного напряжения.

Пусть у нас имеется источник питания GB с напряжением U=12V. Нам необходимо получить напряжение на выходе U1=4V. Напряжения в схеме принято измерять относительно общего провода (земли).
Напряжение на выходе рассчитывается для заданного тока в цепи (I на схеме). Предположим, что ток равен 0,04А. Если напряжение на R2 равно 4 Вольта, то напряжение на R1 будет Ur1 = U - U1 = 8V. По закону Ома найдем величину сопротивлений R1 и R2.
R1 = 8 / 0,04 = 200 Ом;
R2 = 4 / 0,04 = 100 Ом.

Для реализации такой схемы нам необходимо, зная величину сопротивлений, подобрать резисторы соответствующей мощности. Подсчитаем мощность рассеиваемую на резисторах.
Мощность резистора R1 должна быть не меньше: Pr1 = Ur1 2 / R1; Pr1 = 0,32Wt, а мощность R2: Pr2 = U1 2 / R2 = 0,16Wt. Приведенная на рисунке схема называется делителем напряжения и служит для получения более низких напряжений относительно входного напряжения.

Конструктивные особенности сопротивлений. Конструктивно резисторы разделяются по собственному сопротивлению (номиналу), отклонению в процентах от номинала и рассеиваемой мощности. Номинал сопротивления и процентное отклонение от номинала указываются надписью или цветной маркировкой на резисторе, а мощность определяется по габаритным размерам резистора (для резисторов малой и средней, до 1 Вт, мощности), для мощных резисторов мощность указывается на корпусе резистора.

Наибольшее распространение получили резисторы типа МЛТ и ВС. Эти резисторы имеют цилиндрическую форму и два вывода для подключения в электрическую схему . Так как резисторы (не мощные) имеют небольшие размеры, то они обычно маркируются цветными полосами. Назначение цветных полос стандартизировано и справедливо для всех резисторов изготовленных в любой стране мира.

Первая и вторая полоса - это числовое выражение номинального сопротивления резистора; третья полоса - это число на которое нужно умножить числовое выражение полученное из первой и второй полос; четвертая полоса - это процентное отклонение (допуск) значения сопротивления от номинального.


Делитель напряжения. Переменные сопротивления.
Вернемся опять к делителю напряжения. Иногда бывает нужно получить не одно, а несколько более низких напряжений относительно входного напряжения. Для получения нескольких напряжений U1, U2 ... Un можно использовать последовательный делитель напряжения, а для изменения напряжения на выходе делителя использовать переключатель (обозначается SA).


Рассчитаем схему последовательного делителя напряжения для трех выходных напряжений U1=2V, U2=4V и U3=10V при входном напряжении U=12V.
Предположим, что ток I в цепи равен 0,1А.

Сначала найдем напряжение на сопротивлении R4. Ur4 = U - U3; Ur4 = 12 - 10 = 2V.
Найдем величину сопротивления R4. R4 = Ur4 / I; R4 = 2V / 0,1A = 20 Ом.
Мы знаем напряжение на R1, оно равно 2V.
Найдем величину сопротивления R1. R1 = U1 / I; R1 = 2V / 0,1A = 20 Ом.
Напряжение на R2 равно U2 - Ur1. Ur2 = 4V - 2V = 2V.
Найдем величину сопротивления R2. R2 = Ur2 / I; R2=2V/0,1A=20 Ом.
И наконец найдем величину R3, для этого определим напряжение на R3.
Ur3 = U3 - U2; Ur3 = 10V - 4V = 6V. Тогда R3 = Ur3 / I = 6V / 0,1A = 60 Ом.
Очевидно, что зная как рассчитывать делитель напряжения, мы можем изготовить делитель на любое напряжение и любое количество выходных напряжений.
Ступенчатое (не плавное) изменение напряжения на выходе называется ДИСКРЕТНЫМ. Такой делитель напряжения бывает не всегда приемлем так как требует, при большом количестве выходных напряжений, большого числа резисторов и многопозиционного переключателя, а также регулировка напряжения на выходе производится не плавно.

Как же изготовить делитель с плавной регулировкой выходного напряжения? Для этого следует применить переменный резистор. Устройство переменного резистора показано на рисунке.

Перемещение ползунка приводит к плавному изменению сопротивления. Перемещение ползунка из нижнего (смотрите схему) положения в верхнее приводит к плавному изменению напряжения U которое будет показывать вольтметр.

Изменение сопротивления в зависимости от положения ползунка принято выражать в процентах. Переменные резисторы в зависимости от применения в электронных схемах и конструкции могут иметь:
линейную зависимость сопротивления от положения ползунка - линия А на графике;
логарифмическую зависимость - кривая Б на графике;
обратнологарифмическую зависимость - кривая В на графике.
Зависимость изменения сопротивления от перемещения ползунка у переменных резисторов указывается на корпусе резистора соответствующей буквой в конце маркировки типа резистора.
    Конструктивно переменные резисторы делятся на резисторы с линейным перемещением ползунка (Рис. 1), резисторы с круговым перемещением ползунка (Рис. 2) и резисторы подстроечные для регулировки и подстройки электронных схем (Рис. 3). По параметрам переменные резисторы делятся по номинальному сопротивлению, мощности и зависимости изменения сопротивления от изменения положения ползунка. Например обозначение СП3-23а 22кОм 0,25ВТ означает: Сопротивление Переменное, модель №23, характеристика изменения сопротивления типа "А", номинальное сопротивление 22 кОм, мощность 0,25 Ватт.


Переменные резисторы нашли широкое применение в радио и электронных приборах в качестве регуляторов, элементов настройки и элементов управления. Например, вам наверняка знакомы такие радиотехнические приборы, как радиоприемник или музыкальный центр. Они используют переменные резисторы в качестве регуляторов громкости, тембра, подстройки частоты.


На рисунке приведен фрагмент блока регуляторов тембра и громкости музыкального центра, причем в регуляторе тембра применены линейные ползунковые переменные резисторы, а регулятор громкости имеет вращающийся ползунок.

Взглянем на переменный резистор… Что мы о нём знаем? Пока ничего, ведь мы ещё даже не знаем основных параметров этой весьма распространённой в электронике радиодетали. Так давайте же узнаем больше о параметрах переменных и подстроечных резисторов.


Для начала, стоит отметить то, что переменные и подстроечные резисторы являются пассивными компонентами электронных схем. Это значит, что они потребляют энергию электрической цепи в процессе своей работы. К пассивным элементам цепи также относят конденсаторы , катушки индуктивности и трансформаторы .

Параметров, за исключением прецизионных изделий, которые используются в военной или космической технике, у них не слишком много:

    Номинальное сопротивление . Без сомнения, это основной параметр. Полное сопротивление может быть в пределах от десятков ом до десятков мегаом. Почему полное сопротивление? Это сопротивление между крайними неподвижными выводами резистора - оно не изменяется.

    С помощью регулирующего ползунка мы можем менять сопротивление между любым из крайних выводов и выводом подвижного контакта. Сопротивление будет меняться от нуля и до полного сопротивления резистора (или наоборот - в зависимости от подключения). Номинальное сопротивление резистора указывается на его корпусе с помощью буквенно-числового кода (М15М, 15k и т.п.)

    Рассеиваемая или номинальная мощность . В обычной электронной аппаратуре используются переменные резисторы мощностью: 0,04; 0,25; 0,5; 1,0; 2,0 ватта и более.

    Стоит понимать, что проволочные переменные резисторы, как правило, мощнее тонкоплёночных. Да это и не мудрено, ведь тонкая проводящая плёнка может выдержать куда меньший ток, чем провод. Поэтому о мощностных характеристиках можно ориентировочно судить даже по внешнему виду "переменника" и его конструкции.

    Максимальное или предельное рабочее напряжение . Тут всё и так понятно. Это максимальное рабочее напряжение резистора, превышать которое не стоит. Для переменных резисторов максимальное напряжение соответствует ряду: 5, 10, 25, 50, 100, 150, 200, 250, 350, 500, 750, 1000, 1500, 3000, 8000 Вольт. Предельные напряжения некоторых экземпляров:

    СП3-38 (а - д) на мощность 0,125 Вт - 150 В (для работы в цепях переменного и постоянного тока);

    СП3-29а - 1000 В (для работы в цепях переменного и постоянного тока);

    СП5-2 - от 100 до 300 В (в зависимости от модификации и номинального сопротивления).

    ТКС - температурный коэффициент сопротивления . Величина, показывающая изменение сопротивления при изменении температуры окружающей среды на 1 0 С. Для электронной аппаратуры, работающей в сложных климатических условиях, этот параметр очень важен .

    Например, для подстроечных резисторов СП3-38 величина ТКС соответствует ±1000 * 10 -6 1/ 0 С (с сопротивлением до 100 кОм) и ±1500 * 10 -6 1/ 0 С (свыше 100 кОм). Для прецизионных изделий значения ТКС лежит в интервале от 1 * 10 -6 1/ 0 С до 100 * 10 -6 1/ 0 С. Понятно, что чем меньше величина ТКС, тем термостабильнее резистор .

    Допуск или точность . Данный параметр аналогичен допуску у постоянных резисторов . Указывается в процентах %. У подстроечных и переменных резисторов для бытовой аппаратуры допуск обычно колеблется в пределах 10 - 30%.

    Рабочая температура . Температура, при которой резистор исправно выполняет свои функции. Обычно указывается как диапазон: -45 … +55 0 С.

    Износоустойчивость - число циклов передвижения подвижной системы переменного резистора, при котором его параметры остаются в пределах нормы.

    Для особо точных и важных (прецизионных) переменных резисторов износоустойчивость может достигать 10 5 - 10 7 циклов. Правда устойчивость к ударам и вибрации у таких изделий ниже. Регулировочные резисторы более устойчивы к механическим воздействиям, но их износостойкость меньше, чем у прецизионных, от 5000 до 100 000 циклов. Для подстроечных эта величина заметно меньше и редко превышает 1000 циклов.

    Функциональная характеристика . Немаловажным параметром является зависимость изменения сопротивления от угла поворота ручки или положения подвижного контакта (для ползунковых резисторов). Об этом параметре мало говорят, но он очень важен при конструировании звукоусилительной аппаратуры и других приборов. О нём и поговорим подробнее.

Дело в том, что переменные резисторы выпускаются с разными зависимостями изменения сопротивления от угла поворота ручки. Этот параметр называется функциональной характеристикой. Обычно её указывают на корпусе в виде буквы-кода.

Перечислим некоторые из этих характеристик:


Поэтому при подборе переменного резистора для самодельных электронных конструкций стоит обращать внимание и на функциональную характеристику!

Кроме указанных существуют и другие параметры переменных и подстроечных резисторов. Они в основном описывают электромеханические и нагрузочные величины. Вот лишь некоторые из них:

    Разрешающая способность;

    Разбаланс сопротивления многоэлементного переменного резистора;

    Момент статического трения;

    Шум скольжения (вращения);

Как видим, даже такая рядовая деталь обладает целым набором параметров, которые могут отразиться на качестве работы электронной схемы. Поэтому не забывайте о них.

Более детально о параметрах постоянных и переменных резисторов рассказано в справочнике

В одной из предыдущих статей мы обсудили основные аспекты, касающиеся работы с , так вот сегодня мы продолжим эту тему. Все, что мы обсуждали ранее, касалось, в первую очередь, постоянных резисторов , сопротивление которых представляет из себя не изменяющуюся величину. Но это не единственный существующий вид резисторов, поэтому в данной статье мы уделим внимание элементам, имеющим переменное сопротивление .

Итак, чем же отличается переменный резистор от постоянного? Собственно, здесь ответ прямо следует из названия этих элементов 🙂 Величину сопротивления переменного резистора, в отличие от постоянного, можно изменить. Каким способом? А вот это мы как раз и выясним! Для начала давайте рассмотрим условную схему переменного резистора :

Сразу же можно отметить, что тут в отличие от резисторов с постоянным сопротивлением в наличии имеется три вывода, а не два. Сейчас разберемся зачем они нужны и как все это работает 🙂

Итак, основной частью переменного резистора является резистивный слой, имеющий определенное сопротивление. Точки 1 и 3 на рисунке являются концами резистивного слоя. Также важной частью резистора является ползунок, который может изменять свое положение (он может занять любое промежуточное положение между точками 1 и 3, например, он может оказаться в точке 2 как на схеме). Таким образом, в итоге мы получаем следующее. Сопротивление между левым и центральным выводами резистора будет равно сопротивлению участка 1-2 резистивного слоя. Аналогично сопротивление между центральным и правым выводами будет численно равно сопротивление участка 2-3 резистивного слоя. Получается, что перемещая ползунок мы можем получить любое значение сопротивления от нуля до . А – это ни что иное как полное сопротивление резистивного слоя.

Конструктивно переменные резисторы бывают поворотные , то есть для изменения положения ползунка необходимо крутить специальную ручку (такая конструкция подходит для резистора, который изображен на нашей схеме). Также резистивный слой может быть выполнен в виде прямой линии, соответственно, ползунок будет перемещаться прямо. Такие устройства называют движковыми или ползунковыми перемененными резисторами. Поворотные резисторы очень часто можно встретить в аудио-аппаратуре, где они используются для регулировки громкости/баса и т. д. Вот как они выглядят:

Переменный резистор ползункового типа выглядит несколько иначе:

Часто при использовании поворотных резисторов в качестве регуляторов громкости используют резисторы с выключателем. Наверняка вы не раз сталкивались с таким регулятором – к примеру на радиоприемниках. Если резистор находится в крайнем положении (минимальная громкость/устройство выключено), то если его начать вращать, раздастся ощутимый щелчок, после которого приемник включится. А при дальнейшем вращении громкость будет увеличиваться. Аналогично и при уменьшении громкости – при приближении к крайнему положению снова будет щелчок, после которого устройство выключится. Щелчок в данном случае говорит о том, что питание приемника было включено/отключено. Выглядит такой резистор так:

Как видите, здесь есть два дополнительных вывода. Они то как раз и подключаются в цепь питания таким образом, чтобы при вращении ползунка цепь питания размыкалась и замыкалась.

Есть еще один большой класс резисторов, имеющих переменное сопротивление, которое можно изменять механически – это подстроечные резисторы. Давайте уделим немного времени и им 🙂

Подстроечные резисторы.

Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.

Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно 😉), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:

Обозначение переменных резисторов немного отличается от обозначения постоянных:

Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.

Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат – это разные схемы включения (!!!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата – все зависит от схемы включения. Начнем с реостата.

(переменный резистор, включенный по схеме реостата) в основном используется для регулировки силы тока. Если мы включим последовательно с реостатом амперметр, то при перемещении ползунка будем видеть меняющееся значение силы тока. Резистор в этой схеме исполняет роль нагрузки, ток через которую мы и собираемся регулировать переменным резистором. Пусть максимальное сопротивление реостата равно , тогда по закону Ома максимальный ток через нагрузку будет равен:

Здесь мы учли то, что ток будет максимальным при минимальном значении сопротивления в цепи, то есть когда ползунок в крайнем левом положении. Минимальный ток будет равен:

Вот и получается, то реостат выполняет роль регулировщика тока, протекающего через нагрузку.

В данной схеме есть одна проблема – при потере контакта между ползунком и резистивным слоем цепь окажется разомкнутой и через нее перестанет протекать ток. Решить эту проблему можно следующим образом:

Отличие от предыдущей схемы заключается в том, что дополнительно соединены точки 1 и 2. Что это дает в обычном режиме работы? Да ничего, никаких изменений 🙂 Поскольку между ползунком резистора и точкой 1 ненулевое сопротивление, то весь ток потечет напрямую на ползунок, как и при отсутствии контакта между точками 1 и 2. А что же произойдет при потере контакта между ползунком и резистивным слоем? А эта ситуация абсолютно идентична отсутствию прямого соединения ползунка с точкой 2. Тогда ток потечет через реостат (от точки 1 к точке 3), и величина его будет равна:

То есть при потере контакта в данной схеме будет всего лишь уменьшение силы тока, а не полный разрыв цепи как в предыдущем случае.

С реостатом мы разобрались, давайте рассмотрим переменный резистор, включенный по схеме потенциометра.

Не пропустите статью про измерительные приборы в электрических цепях –

В отличие от реостата, используется для регулировки напряжения. Именно по этой причине на нашей схеме вы видите целых два вольтметра 🙂 Ток протекающий через потенциометр, от точки 3 к точке 1, при перемещении ползунка остается неизменным, но меняется величины сопротивления между точками 2-3 и 2-1. А поскольку напряжение прямо пропорционально силе тока и сопротивлению, то оно будет меняться. При перемещении ползунка вниз сопротивление 2-1 будет уменьшаться, соответственно, уменьшаться будут и показания вольтметра 2. При таком перемещении ползунка (вниз) сопротивление участка 2-3 вырастет, а вместе с ним и напряжение на вольтметре 1. При это в сумме показания вольтметров будут равны напряжению источника питания, то есть 12 В. В крайнем верхнем положении на вольтметре 1 будет 0 В, а на вольтметре 2 – 12 В. На рисунке ползунок расположен в среднем положении, и показания вольтметров, что абсолютно логично, равны 🙂

На этом мы заканчиваем рассматривать переменные резисторы , в следующей статье речь пойдет о возможных соединениях резисторов между собой, спасибо за внимание, рад буду видеть вас на нашем сайте! 🙂

В прошлый раз для подключения светодиода к источнику постоянного тока напряжением 6,4 В (4 батарейки АА) мы использовали резистор с сопротивлением порядка 200 Ом. Это в принципе обеспечивало нормальную работу светодиода и не допускало его перегорания. Но что, если мы хотим регулировать яркость светодиода?

Для этого самым простым вариантом будет использование потенциометра (или подстроечного резистора). Он представляет собой в большинстве случаев цилиндр с ручкой регулировки сопротивления и тремя контактами. Разберемся как же он устроен.

Следует помнить, что правильно регулировать яркость светодиода ШИМ-модуляцией, а не изменением напряжения, поскольку для каждого диода существует оптимальное рабочее напряжение. Но для наглядности демонстрации использования потенциометра такое его применение (потенциометра) в учебных целях допустимо.

Отжав четыре зажима и сняв нижнюю крышку мы увидим, что два крайних контакта подсоединены к графитовой дорожке. Средний контакт соединен с кольцевым контактом внутри. А ручка регулировки просто передвигает перемычку, соединяющую графитовую дорожку и кольцевой контакт. При вращении ручки меняется длина дуги графитовой дорожки, которая в конечном итоге и определяет сопротивление резистора.

Следует отметить, что при измерении сопротивления между двумя крайними контактами, показания мультиметра будут соответствовать номинальному сопротивлению потенциометра, поскольку в этом случае измеряемое сопротивление соответствует сопротивлению всей графитовой дорожке (в нашем случае 2 кОм). А сумма сопротивлений R1 и R2 всегда будет примерно равна номинальному, вне зависимости от угла поворота ручки регулировки.

Итак подключив последовательно к светодиоду потенциометр, как показано на схеме, меняя его сопротивление, можно менять яркость светодиода. По сути, при изменении сопротивления потенциометра, мы меняем ток, проходящий через светодиод, что и приводит к изменению его яркости.

Правда при этом следует помнить, что для каждого светодиода есть предельно допустимый ток, при превышении которого он просто сгорает. Поэтому, чтобы предотвратить сгорание диода при слишком сильном выкручивании ручки потенциометра, можно включить последовательно еще один резистор с сопротивлением порядка 200 Ом (данное сопротивление зависит от типа используемого светодиода) как показано на схеме ниже.

Для справки: светодиоды нужно подключать длинной «ногой» к +, а короткой к -. В противном случае светодиод при малых напряжениях просто не будет гореть (не будет пропускать ток), а при некотором напряжении, называемым напряжением пробоя (в нашем случае это 5 В) диод выйдет из строя.

Вроде бы простая деталька, чего тут может быть сложного? Ан нет! Есть в использовании этой штуки пара хитростей. Конструктивно переменный резистор устроен также как и нарисован на схеме — полоска из материала с сопротивлением, к краям припаяны контакты, но есть еще подвижный третий вывод, который может принимать любое положение на этой полоске, деля сопротивление на части. Может служить как перестариваемым делителем напряжения (потенциометром) так и переменным резистором — если нужно просто менять сопротивление.

Хитрость конструктивная:
Допустим, нам надо сделать переменное сопротивление. Выводов нам надо два, а у девайса их три. Вроде бы напрашивается очевидная вещь — не использовать один крайний вывод, а пользоваться только средним и вторым крайним. Плохая идея! Почему? Да просто в момент движения по полоске подвижный контакт может подпрыгивать, подрагивать и всячески терять контакт с поверхностью. При этом сопротивление нашего переменного резистора становится под бесконечность, вызывая помехи при настройке, искрение и выгорание графитовой дорожки резистора, вывод настраимого девайса из допустимого режима настройки, что может быть фатально.
Решение? Соединить крайний вывод с средним. В этом случае, худшее что ждет девайс — кратковременное появление максимального сопротивления, но не обрыв.

Борьба с предельными значениями.
Если переменным резистором регулируется ток, например питание светодиода, то при выведении в крайнее положение мы можем вывести сопротивление в ноль, а это по сути дела отстутствие резистора — светодиод обуглится и сгорит. Так что нужно вводить дополнительный резистор, задающий минимально допустимое сопротивление. Причем тут есть два решения — очевидное и красивое:) Очевидное понятно в своей простоте, а красивое замечательно тем, что у нас не меняется максимально возможное сопротивление, при невозможности вывести движок на ноль. При крайне верхнем положении движка сопротивление будет равно (R1*R2)/(R1+R2) — минимальное сопротивление. А в крайне нижнем будет равно R1 — тому которое мы и рассчитали, и не надо делать поправку на добавочный резистор. Красиво же! :)

Если надо воткнуть ограничение по обеим сторонам, то просто вставляем по постоянному резистору сверху и снизу. Просто и эффективно. Заодно можно и получить увеличение точности, по принципу приведенному ниже.

Порой бывает нужно регулировать сопротивление на много кОм, но регулировать совсем чуть чуть — на доли процента. Чтобы не ловить отверткой эти микроградусы поворта движка на большом резисторе, то ставят два переменника. Один на большое сопротивление, а второй на маленькое, равное величине предполагаемой регулировки. В итоге мы имеем две крутилки — одна «Грубо » вторая «Точно » Большой выставляем примерное значение, а потом мелкой добиваем его до кондиции.

(постоянными резисторами), а в этой части статьи поговорим о , или переменных резисторах .

Резисторы переменного сопротивления , или переменные резисторы являются радиокомпонентами, сопротивление которых можно изменять от нуля и до номинального значения. Они применяются в качестве регуляторов усиления, регуляторов громкости и тембра в звуковоспроизводящей радиоаппаратуре, используются для точной и плавной настройки различных напряжений и разделяются на потенциометры и подстроечные резисторы.

Потенциометры применяются в качестве плавных регуляторов усиления, регуляторов громкости и тембра, служат для плавной регулировки различных напряжений, а также используются в следящих системах, в вычислительных и измерительных устройствах и т.п.

Потенциометром называют регулируемый резистор, имеющий два постоянных вывода и один подвижный. Постоянные выводы расположены по краям резистора и соединены с началом и концом резистивного элемента, образующим общее сопротивление потенциометра. Средний вывод соединен с подвижным контактом, который перемещается по поверхности резистивного элемента и позволяет изменять величину сопротивления между средним и любым крайним выводом.

Потенциометр представляет собой цилиндрический или прямоугольный корпус, внутри которого расположен резистивный элемент, выполненный в виде незамкнутого кольца, и выступающая металлическая ось, являющаяся ручкой потенциометра. На конце оси закреплена пластина токосъемника (контактная щетка), имеющая надежный контакт с резистивным элементом. Надежность контакта щетки с поверхностью резистивного слоя обеспечивается давлением ползунка, выполненного из пружинных материалов, например, бронзы или стали.

При вращении ручки ползунок перемещается по поверхности резистивного элемента, в результате чего сопротивление изменяется между средним и крайними выводами. И если на крайние выводы подать напряжение, то между ними и средним выводом получают выходное напряжение.

Схематично потенциометр можно представить, как показано на рисунке ниже: крайние выводы обозначены номерами 1 и 3, средний обозначен номером 2.

В зависимости от резистивного элемента потенциометры разделяются на непроволочные и проволочные .

1.1 Непроволочные.

В непроволочных потенциометрах резистивный элемент выполнен в виде подковообразной или прямоугольной пластины из изоляционного материала, на поверхность которых нанесен резистивный слой, обладающий определенным омическим сопротивлением.

Резисторы с подковообразным резистивным элементом имеют круглую форму и вращательное перемещение ползунка с углом поворота 230 — 270°, а резисторы с прямоугольным резистивным элементом имеют прямоугольную форму и поступательное перемещение ползунка. Наиболее популярными являются резисторы типа СП, ОСП, СПЕ и СП3. На рисунке ниже показан потенциометр типа СП3-4 с подковообразным резистивным элементом.

Отечественной промышленностью выпускались потенциометры типа СПО, у которых резистивный элемент впрессован в дугообразную канавку. Корпус такого резистора выполнен из керамики, а для защиты от пыли, влаги и механических повреждений, а также в целях электрической экранировки весь резистор закрывается металлическим колпачком.

Потенциометры типа СПО обладают большой износостойкостью, нечувствительны к перегрузкам и имеют небольшие размеры, но у них есть недостаток – сложность получения нелинейных функциональных характеристик. Эти резисторы до сих пор еще можно встретить в старой отечественной радиоаппаратуре.

1.2. Проволочные.

В проволочных потенциометрах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора (о законе изменения сопротивления будет сказано ниже). Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10 – 15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления потенциометров. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для потенциометров применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

2. Основные параметры переменных резисторов.

Основными параметрами резисторов являются: полное (номинальное) сопротивление, форма функциональной характеристики, минимальное сопротивление, номинальная мощность, уровень шумов вращения, износоустойчивость, параметры, характеризующие поведение резистора при климатических воздействиях, а также размеры, стоимость и т.п. Однако при выборе резисторов чаще всего обращают внимание на номинальное сопротивление и реже на функциональную характеристику.

2.1. Номинальное сопротивление.

Номинальное сопротивление резистора указывается на его корпусе. Согласно ГОСТ 10318-74 предпочтительными числами являются 1,0 ; 2,2 ; 3,3 ; 4,7 Ом, килоом или мегаом.

У зарубежных резисторов предпочтительными числами являются 1,0 ; 2,0 ; 3,0 ; 5.0 Ом, килоом и мегаом.

Допускаемые отклонения сопротивлений от номинального значения установлены в пределах ±30%.

Полным сопротивлением резистора считается сопротивление между крайними выводами 1 и 3.

2.2. Форма функциональной характеристики.

Потенциометры одного и того же типа могут отличаться функциональной характеристикой, определяющей по какому закону изменяется сопротивление резистора между крайним и средним выводом при повороте ручки резистора. По форме функциональной характеристики потенциометры разделяются на линейные и нелинейные : у линейных величина сопротивления изменяется пропорционально движению токосъемника, у нелинейных она изменяется по определенному закону.

Существуют три основных закона: А — Линейный, Б – Логарифмический, В — Обратно Логарифмический (Показательный). Так, например, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между средним и крайним выводом резистивного элемента изменялось по обратному логарифмическому закону (В). Только в этом случае наше ухо способно воспринимать равномерное увеличение или уменьшение громкости.

Или в измерительных приборах, например, генераторах звуковой частоты, где в качестве частотозадающих элементов используются переменные резисторы, также требуется, чтобы их сопротивление изменялось по логарифмическому (Б) или обратному логарифмическому закону. И если это условие не выполнить, то шкала генератора получится неравномерной, что затруднит точную установку частоты.

Резисторы с линейной характеристикой (А) применяются в основном в делителях напряжения в качестве регулировочных или подстроечных.

Зависимость изменения сопротивления от угла поворота ручки резистора для каждого закона показано на графике ниже.

Для получения нужной функциональной характеристики большие изменения в конструкцию потенциометров не вносятся. Так, например, в проволочных резисторах намотку провода ведут с изменяющимся шагом или сам каркас делают изменяющейся ширины. В непроволочных потенциометрах меняют толщину или состав резистивного слоя.

К сожалению, регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Часто владельцам аудиоаппаратуры, эксплуатируемой длительное время, приходится слышать шорохи и треск из громкоговорителя при вращении регулятора громкости. Причиной этого неприятного момента является нарушение контакта щетки с токопроводящим слоем резистивного элемента или износ последнего. Скользящий контакт является наиболее ненадежным и уязвимым местом переменного резистора и является одной из главной причиной выхода детали из строя.

3. Обозначение переменных резисторов на схемах.

На принципиальных схемах переменные резисторы обозначаются также как и постоянные, только к основному символу добавляется стрелка, направленная в середину корпуса. Стрелка обозначает регулирование и одновременно указывает, что это средний вывод.

Иногда возникают ситуации, когда к переменному резистору предъявляются требования надежности и длительности эксплуатации. В этом случае плавное регулирование заменяют ступенчатым, а переменный резистор строят на базе переключателя с несколькими положениями. К контактам переключателя подключают резисторы постоянного сопротивления, которые будут включаться в цепь при повороте ручки переключателя. И чтобы не загромождать схему изображением переключателя с набором резисторов, указывают только символ переменного резистора со знаком ступенчатого регулирования . А если есть необходимость, то дополнительно указывают и число ступеней.

Для регулирования громкости и тембра, уровня записи в звуковоспроизводящей стереофонической аппаратуре, для регулирования частоты в генераторах сигналов и т.д. применяются сдвоенные потенциометры , сопротивления которых изменяется одновременно при повороте общей оси (движка). На схемах символы входящих в них резисторов располагают как можно ближе друг к другу, а механическую связь, обеспечивающую одновременное перемещение движков, показывают либо двумя сплошными линиями, либо одной пунктирной линией.

Принадлежность резисторов к одному сдвоенному блоку указывается согласно их позиционному обозначению в электрической схеме, где R1.1 является первым по схеме резистором сдвоенного переменного резистора R1, а R1.2 — вторым. Если же символы резисторов окажутся на большом удалении друг от друга, то механическую связь обозначают отрезками пунктирной линии.

Промышленностью выпускаются сдвоенные переменные резисторы, у которых каждым резистором можно управлять отдельно, потому что ось одного проходит внутри трубчатой оси другого. У таких резисторов механическая связь, обеспечивающая одновременное перемещение, отсутствует, поэтому на схемах ее не показывают, а принадлежность к сдвоенному резистору указывают согласно позиционному обозначению в электрической схеме.

В переносной бытовой аудиоаппаратуре, например, в приемниках, плеерах и т.д., часто используют переменные резисторы со встроенным выключателем, контакты которого задействуют для подачи питания в схему устройства. У таких резисторов переключающий механизм совмещен с осью (ручкой) переменного резистора и при достижении ручкой крайнего положения воздействует на контакты.

Как правило, на схемах контакты включателя располагают возле источника питания в разрыв питающего провода, а связь выключателя с резистором обозначают пунктирной линией и точкой, которую располагают у одной из сторон прямоугольника. При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней.

4. Подстроечные резисторы.

Подстроечные резисторы являются разновидностью переменных и служат для разовой и точной настройки радиоэлектронной аппаратуры в процессе ее монтажа, наладки или ремонта. В качестве подстроечных используют как переменные резисторы обычного типа с линейной функциональной характеристикой, ось которых выполнена «под шлиц» и снабжена стопорным устройством, так и резисторы специальной конструкции с повышенной точностью установки величины сопротивления.

В основной своей массе подстроечные резисторы специальной конструкции изготавливают прямоугольной формы с плоским или кольцевым резистивным элементом. Резисторы с плоским резистивным элементом (а ) имеют поступательное перемещение контактной щетки, осуществляемое микрометрическим винтом. У резисторов с кольцевым резистивным элементом (б ) перемещение контактной щетки осуществляется червячной передачей.

При больших нагрузках используются открытые цилиндрические конструкции резисторов, например, ПЭВР.

На принципиальных схемах подстроечные резисторы обозначаются также как и переменные, только вместо знака регулирования используется знак подстроечного регулирования.

5. Включение переменных резисторов в электрическую цепь.

В электрических схемах переменные резисторы могут применяться в качестве реостата (регулируемого резистора) или в качестве потенциометра (делителя напряжения). Если в электрической цепи необходимо регулировать ток, то резистор включают реостатом, если напряжение, то включают потенциометром.

При включении резистора реостатом задействуют средний и один крайний вывод. Однако такое включение не всегда предпочтительно, так как в процессе регулирования возможна случайная потеря средним выводом контакта с резистивным элементом, что повлечет за собой нежелательный разрыв электрической цепи и, как следствие, возможный выход из строя детали или электронного устройства в целом.

Чтобы исключить случайный разрыв цепи свободный вывод резистивного элемента соединяют с подвижным контактом, чтобы при нарушении контакта электрическая цепь всегда оставалась замкнута.

На практике включение реостатом применяют тогда, когда хотят переменный резистор использовать в качестве добавочного или токоограничивающего сопротивления.

При включении резистора потенциометром задействуются все три вывода, что позволяет его использовать делителем напряжения. Возьмем, к примеру, переменный резистор R1 с таким номинальным сопротивлением, которое будет гасить практически все напряжение источника питания, приходящее на лампу HL1. Когда ручка резистора выкручена в крайнее верхнее по схеме положение, то сопротивление резистора между верхним и средним выводами минимально и все напряжение источника питания поступает на лампу, и она светится полным накалом.

По мере перемещения ручки резистора вниз сопротивление между верхним и средним выводом будет увеличиваться, а напряжение на лампе постепенно уменьшаться, отчего она станет светить не в полный накал. А когда сопротивление резистора достигнет максимального значения, напряжение на лампе упадет практически до нуля, и она погаснет. Именно по такому принципу происходит регулирование громкости в звуковоспроизводящей аппаратуре.

Эту же схему делителя напряжения можно изобразить немного по-другому, где переменный резистор заменяется двумя постоянными R1 и R2.

Ну вот, в принципе и все, что хотел сказать о резисторах переменного сопротивления . В заключительной части рассмотрим особый тип резисторов, сопротивление которых изменяется под воздействием внешних электрических и неэлектрических факторов — .
Удачи!

Литература:
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. В. Фролов — «Язык радиосхем», 1988 г.
М. А. Згут — «Условные обозначения и радиосхемы», 1964 г.