Пайка и лужение металла. Техника пайки. Лужение. Пайка мягкими и твердыми припоями Клепка пайка и лужение металлов

Пайка позволяет соединять в единое изделие элементы из разных металлов и сплавов, обладающих различными физико-механическими свойствами. Например, методом пайки можно соединять малоуглеродистые и высокоуглеродистые стали, чугунные детали со стальными, твердый сплав со сталью и т. д. Особо следует отметить возможность соединения путем пайки деталей из алюминия и его сплавов. Широко применяется метод напайки пластинок твердого сплава к державкам при изготовлении режущего инструмента.

В условиях домашней мастерской пайка – самый доступный вид образования неподвижных неразъемных соединений. При пайке в зазор между нагретыми деталями вводится расплавленный присадочный металл, называемый припоем. Припой, имеющий более низкую температуру плавления, чем соединяемые металлы, смачивая поверхность деталей, соединяет их при охлаждении и затвердевании. В процессе пайки основной металл и припой, взаимно растворяясь друг в друге, обеспечивают высокую прочность соединения, одинаковую (при качественном выполнении пайки) с прочностью целого сечения основной детали.

Процесс пайки отличается от сварки тем, что кромки соединяемых деталей не расплавляются, а только нагреваются до температуры плавления припоя.

Для осуществления паяных соединений необходимы: паяльник электрический или с непрямым подогревом, паяльная лампа, припой, флюс.

Мощность электрического паяльника зависит от размера соединяемых деталей, от материала, из которого они изготовлены. Так, для паяния медных изделий небольших размеров (например, проволоки сечением в несколько квадратных миллиметров) достаточно мощности 50–100 Вт, при пайке электронных приборов мощность электрического паяльника должна быть не более 40 Вт, а напряжение питания – не более 40 В, для пайки крупных деталей необходима мощность в несколько сот ватт.

Паяльная лампа используется для нагрева паяльника с непрямым подогревом и для прогрева паяемых деталей (при большой площади пайки). Вместо паяльной лампы можно использовать газовую горелку – она более производительна и надежна в эксплуатации.

В качестве припоя чаще всего используются оловянно-свинцовые сплавы, имеющие температуру плавления 180–280 °C. Если к таким припоям добавить висмут, галлий, кадмий, то получаются легкоплавкие припои с температурой плавления 70–150 °C. Эти припои актуальны для пайки полупроводниковых приборов. При металлокерамической пайке в качестве припоя используется порошковая смесь, состоящая из тугоплавкой основы (наполнителя) и легкоплавких компонентов, которые обеспечивают смачивание частиц наполнителя и соединяемых поверхностей. В продаже имеются и сплавы в виде брусков или проволоки, которые представляют собой симбиоз припоя и флюса.

Использование в процессе пайки флюсов основано на их способности предотвращать образование на поверхностях деталей окисной пленки при нагреве. Они также снижают поверхностное натяжение припоя. Флюсы должны отвечать следующим требованиям: сохранение стабильного химического состава и активности в интервале температур плавления припоя (то есть флюс под действием этих температур не должен разлагаться на составляющие), отсутствие химического взаимодействия с паяемым металлом и припоем, легкость удаления продуктов взаимодействия флюса и окисной пленки (промывкой или испарением), высокая жидкотекучесть. Для пайки различных металлов характерно использование определенного флюса: при пайке деталей из латуни, серебра, меди и железа в качестве флюса применяется хлористый цинк; свинец и олово требуют стеариновой кислоты; для цинка подходит серная кислота. Но существуют и так называемые универсальные припои: канифоль и паяльная кислота.

Детали, которые предполагается соединить методом пайки, следует должным образом подготовить: очистить от грязи, удалить напильником или наждачной бумагой окисную пленку, образующуюся на металле под воздействием воздуха, протравить кислотой (стальные – соляной, из меди и ее сплавов – серной, сплавы с большим содержанием никеля – азотной), обезжирить тампоном, смоченным в бензине, и только после этого приступать непосредственно к процессу пайки.

Нужно нагреть паяльник. Нагрев проверяется погружением носика паяльника в нашатырь (твердый): если нашатырь шипит и от него идет сизый дым, то нагрев паяльника достаточный; ни в коем случае нельзя перегревать паяльник. Носик его при необходимости следует очистить напильником от окалины, образовавшейся в процессе нагревания, погрузить рабочую часть паяльника во флюс, а затем в припой так, чтобы на носике паяльника остались капельки расплавленного припоя, прогреть паяльником поверхности деталей и облудить их (то есть покрыть тонким слоем расплавленного припоя). После того как детали немного остынут, плотно соединить их между собой; снова прогреть место пайки паяльником и заполнить зазор между кромками деталей расплавленным припоем.

Если необходимо соединить методом пайки большие поверхности, то поступают несколько иначе: после прогревания и облуживания места спайки зазор между поверхностями деталей заполняют кусочками холодного припоя и одновременно прогревают детали и расплавляют припой. В этом случае рекомендуется периодически обрабатывать носик паяльника и место пайки флюсом.

О том, что паяльник перегревать недопустимо, уже говорилось, а почему? Дело в том, что перегретый паяльник плохо удерживает капельки расплавленного припоя, но не это главное. При очень высоких температурах припой может окислиться и соединение получится непрочным. А при пайке полупроводниковых приборов перегрев паяльника может привести к их электрическому пробою, и приборы выйдут из строя (именно поэтому при пайке электронных приборов используют мягкие припои и воздействие разогретого паяльника на место пайки ограничивают 3–5 секундами).

Когда место спайки полностью остынет, его очищают от остатков флюса. Если шов получился выпуклым, то его можно выровнять (например, напильником).

Качество пайки проверяют: внешним осмотром – на предмет обнаружения непропаянных мест, изгибом в месте спая – не допускается образование трещин (проверка на прочность); паяные сосуды проверяют на герметичность заполнением водой – течи не должно быть.

Существуют способы пайки, при которых используется твердый припой – медно-цинковые пластины толщиной 0,5–0,7 мм, или прутки диаметром 1–1,2 мм, или смесь опилок медно-цинкового припоя с бурой в соотношении 1: 2. Паяльник в этом случае не используется.

Первые два способа основаны на применении пластинчатого или пруткового припоя. Подготовка деталей к паянию твердым припоем аналогична подготовке к пайке с использованием мягкого припоя.

Далее на место спайки накладываются кусочки припоя и спаиваемые детали вместе с припоем скручиваются тонкой вязальной стальной или нихромовой проволокой (диаметром 0,5–0,6 мм). Место паяния посыпается бурой и нагревается до ее плавления. Если припой не расплавился, то место паяния посыпается бурой вторично (без удаления первой порции) и нагревается до расплавления припоя, который заполняет зазор между спаиваемыми деталями.

При втором способе место паяния нагревают докрасна (без кусочков припоя), посыпают бурой и подводят к нему пруток припоя (продолжая нагрев): припой при этом плавится и заполняет щель между деталями.

Еще один способ пайки основан на применении в качестве припоя порошкообразной смеси: подготовленные детали нагревают в месте пайки докрасна (без припоя), посыпают смесью буры и опилок припоя и продолжают нагревать до плавления смеси.

После паяния любым из трех предложенных способов спаянные детали охлаждают и очищают место пайки от остатков буры, припоя и вязальной проволоки. Проверку качества паяния производят визуально: для обнаружения непропаянных мест и прочности слегка постукивают спаянными деталями по массивному предмету – при некачественной пайке в шве образуется излом.

Разновидности паяных соединений показаны на рис. 53.

Рис. 53. Конструкции паяных соединений: а – внахлестку; б – с двумя нахлестками; в – встык; г – косым швом; д – встык с двумя нахлестками; е – в тавр.

В большинстве случаев детали сначала подвергают лужению, что облегчает последующую пайку. Схема процесса лужения показана на рис. 54.


Рис. 54. Схема лужения паяльником: 1 – паяльник; 2 – основной металл; 3 – зона сплавления припоя с основным металлом; 4 – флюс; 5 – поверхностный слой флюса; 6 – растворенный окисел; 7 – пары флюса; 8 – припой.

Однако лужение можно использовать не только как один из этапов паяния, но и как самостоятельную операцию, когда вся поверхность металлического изделия покрывается тонким слоем олова для придания ему декоративных и дополнительных эксплуатационных качеств.

В этом случае покрывающий материал носит название не припоя, а полуды. Чаще всего лудят оловом, но в целях экономии в полуду можно добавить свинец (не более трех частей свинца на пять частей олова). Добавление в полуду 5 % висмута или никеля придает луженым поверхностям красивый блеск. А введение в полуду такого же количества железа делает ее более прочной.

Кухонную утварь (посуду) можно лудить только чисто оловянной полудой, добавление в нее различных металлов опасно для здоровья!

Полуда хорошо и прочно ложится только на идеально чистые и обезжиренные поверхности, поэтому изделие перед лужением необходимо тщательно очистить механическим способом (напильником, шабером, шлифовальной шкуркой до равномерного металлического блеска) либо химическим – подержать изделие в кипящем 10 %-ном растворе каустической соды в течение 1–2 минут, а затем поверхность протравить 25 %-ным раствором соляной кислоты. В конце очистки (независимо от способа) поверхности промывают водой и сушат.

Сам процесс лужения можно осуществлять методом растирания, погружения или гальваническим путем (при таком лужении необходимо использование специального оборудования, поэтому гальваническое лужение на дому, как правило, не осуществляется).

Метод растирания заключается в следующем: подготовленную поверхность покрывают раствором хлористого цинка, посыпают порошком нашатыря и нагревают до температуры плавления олова.

Затем следует приложить оловянный пруток к поверхности изделия, распределить олово по поверхности и растереть чистой паклей до образования равномерного слоя. Необлуженные места пролудить повторно. Работу следует выполнять в брезентовых рукавицах.

При методе лужения погружением олово расплавляют в тигле, подготовленную деталь захватывают щипцами или плоскогубцами, погружают на 1 минуту в раствор хлористого цинка, а затем на 3–5 минут в расплавленное олово. Извлекают деталь из олова и сильным встряхиванием удаляют излишки полуды. После лужения изделие следует охладить и промыть водой.

Из книги: Коршевер Н. Г. Работы по металлу

Свинцово-оловянные припои (ПОС.)

Применение свинцово-оловянных припоев только тогда может дать хорошие результаты, когда работающий правильно представляет процесс паяния и знает основные правила работы. В зависимости от назначения спаиваемых деталей или изделий швы пайки подразделяются на: прочные швы (должны выдерживать механические нагрузки); плотные швы (не должны пропускать жидкостей или газов, находящихся под слабым давлением); прочные и плотные швы (должны выдерживать давление жидкостей и газов, находящихся под большим давлением).

Припой в процессе паяния в результате смачивания образует с поверхностью спаиваемой детали зону промежуточного сплава, причем качество паяния в таком случае при наличии чистых металлических поверхностей будет зависеть от скорости растворения данного металла в припое: чем скорость растворения больше, тем качество пайки лучше. Иначе говоря, качество паяния зависит от скорости диффузии. Увеличению степени диффузии способствуют: наличие чистых металлических поверхностей спаиваемых деталей. При окисленной поверхности степень диффузии припоя значительно уменьшается или полностью отсутствует; предотвращение окисления расплавленного припоя в процессе пайки, для чего применяются соответствующие паяльные флюсы; паяние при температуре, близкой к температуре плавления спаиваемой детали; медленное охлаждение после паяния (в горячем песке, горячих углях). Замечено, что при спаивании деталей, покрытых гальваническим путем другими металлами, шов не получается такой прочности, как при спаивании чистых металлов или сплавов. Это наблюдается при всех гальванических покрытиях (никелем, хромом, оловом, кадмием). Наоборот, пайка по горячему лужению оловом или оловянно-свинцовыми сплавами дает всегда более прочное соединение, чем по чистому металлу. Этот пример подтверждает влияние степени диффузии на прочность шва при паянии.

Лужение - процесс покрытия металлических поверхностей оловом или специальным сплавом на оловянной основе (полудой).

Припой - металл или сплав, который служит для соединения в расплавленном состоянии, в промежутке (шве) между деталями, поэтому припой должен иметь более низкую температуру плавления, чем соединяемые металлы.

По своему составу припои разделяются на несколько групп, из которых наиболее важная - оловянно-свинцовые припои.

Составы припоев.

Часто в связи с отсутствием сведений о припоях у работающего всегда имеется тенденция применять припои с высоким содержанием олова, хотя совсем не всегда в этом имеется необходимость. Правильность выбора припоя может быть гарантирована только тогда, когда известны его свойства.

В табл. 1 указаны составы наиболее известных оловянно-свинцовых припоев.

Назначение припоев.

ПОС 90 - для паяния внутренних швов пищевой посуды (кастрюли и т.п.).

ПОС 40 - паяние латуни, железа и медных проводов.

ПОС 30 - паяние латуни, меди, железа, цинковых и оцинкованных листов, белой жести, приборов, радиоаппаратуры, гибких шлангов и бандажной проволоки электромоторов.

ПОС 18 - паяние свинца, железа, латуни, меди, оцинкованного железа, лужение дерева перед пайкой, заменитель припоя ПОС 40.

ПОСС 4-6 - паяние белой жести, железа, меди, свинца при наличии клепаных замочных швов, заменитель припоя ПОС 30.

Таблица 1 Составы оловянно-свинцовых припоев:


Свойства оловянно-свинцовых припоев.

В табл. 2 указаны свойства оловянно-свинцовых припоев по сравнению с чистыми металлами - свинцом и оловом. Наиболее важное свойство припоев - сопротивление срезу, так как большинство паяных соединений работает на срез.

Оловянно-свинцовые припои марок ПОС 18, ПОС 30, ПОС 40 имеют более высокое сопротивление срезу, чем чистые олово и свинец, и потому применение их для получения прочного шва дает более хорошие результаты.

Припои должны обладать как высоким сопротивлением разрыву, так и максимальной вязкостью. По данным таблицы можно установить взаимозаменяемость высокооловянных и малооловянных припоев. Например, припой ПОС 18 в отношении вязкости несколько лучше припоя ПОС 40, причем незначительно отличается от последнего по прочности. Припой ПОС 50 вполне может быть заменен припоем ПОС 40 и ПОС 30. Знания твердости важны в том отношении, что более твердые припои лучше сопротивляются истиранию, чем мягкие.

Поэтому все преимущества в этом отношении будут за припоем ПОСС 4 - 6. Остальные припои (ПОС 18, ПОС 30 и ПОС 40) имеют несколько меньшую твердость. Ударная вязкость (сопротивление удару) имеет наибольшее значение для чистого олова, но припой ПОС 40 и ПОС 30 немногим отличается в этом отношении от олова. Поэтому припой ПОС 40 может быть применен в особых случаях, где места спайки подвергаются сильной вибрации. Для обычных условий работы, при небольших вибрациях, применяют припой ПОС 18.

Температура плавления припоя имеет тоже большое значение: от нее зависит выбор метода паяния. Наиболее низкой температурой плавления обладает припой ПОС 62, содержащий 62 % олова. Этот припой применяют в случаях, когда при паянии нельзя перегревать детали, например при соединении очень тонких проводов. Возможность применения в таких случаях тройных легкоплавких сплавов, в которых

Таблица 1 Свойства оловяино-свинцовых припоев


Низкая точка плавления достигается добавкой третьего компонента (например, висмута), исключается, в связи с тем, что тройные сплавы не обладают такой высокой вязкостью, как двойные сплавы. Припой НОС 62 теперь применяют мало, так как перегрева при паянии легко избежать, применив припой ПОС 40 очень тонкого сечения, например в виде проволоки диаметром 1-2 мм. Под действием паяльника расплавление тонкой проволоки происходит быстро, вследствие чего уменьшается до минимума время воздействия высокой температуры.

Практика показала, что припой марки ПОСС 4-6 в отношении прочности спайки равноценен припою марки ПОС 30 для всех материалов, кроме оцинкованного железа и меди. При этом припой марки ПОС 40 в большинстве случаев обладает наибольшей прочностью и в этом отношении превосходит высокооловянный припой марки ПОС 62 и чистое олово. Поэтому для получения наибольшей прочности шва ни в коем случае не следует применять чистое олово.

Припой марки ПОС 18 при паянии встык дает более высокую прочность спайки, чем припой марки ПОС 40. Поэтому припой ПОС 18 применяют, когда температура плавления припоя не имеет решающего значения.

Технологический процесс паяния.

Для получения наилучших результатов технологический процесс паяния должен состоять из следующих операций:

механической (шабером, напильником, наждачной бумагой) или химической очистки; покрытия флюсом; нагревания (паяльником, паяльной лампой, на горне); предварительного облуживания припоем (паяльником, или натиранием, или погружением в припой); скрепления мест для спаивания, покрытия их флюсом и нагревания; 63введения припоя, его расплавления и удаления излишков припоя, а также остатков флюса.

Очистку спаиваемых поверхностей от окислов производят напильником или шабером так, чтобы промежуток между двумя поверхностями был везде одинаков и не превышал 0,1-0,3 мм. Такой небольшой промежуток необходим для образования капиллярных сил, которые способствуют засасыванию припоя на значительную глубину от кромки. Если спаиваемые поверхности имеют следы жира или масла, то их обрабатывают горячим раствором щелочи. Обычно берут 10 %-ный раствор соды. Если механически очистить детали по какой-либо причине нельзя, то применяют травление деталей в кислотах. Обычно берут 10 %-ный раствор серной кислоты для меди и ее сплавов, а для деталей из черных металлов - 10 %-ный раствор соляной кислоты, причем раствор должен быть подогрет до 50-70 °С.

После очистки и подготовки деталей места спайки должны быть облужены. Предварительное лужение имеет весьма важное значение, так как а этом случае достигаются повышенные прочность и плотность спая. В случае невозможности предварительного лужения паяние ведут и по чистой поверхности, но результаты, конечно, будут более низкими.

Для предварительного лужения применяется тот же припой, какой применяется и для последующего паяния. Если, например, паяние производится припоем марки ПОС 30, то и предварительное лужение должно быть осуществлено тем же припоем.

Перед паянием детали скрепляют, чтобы места соединений не расходились при небольших механических воздействиях, например при наложении паяльника. Самый простой способ скрепления - обвязка мягкой проволокой, лучше железной, но, конечно, не исключены и другие способы, например сжатие струбцинами, загиб шва с образованием «замка».

Метод паяния в значительной мере зависит от типа применяемого припоя. Наиболее характерные случаи паяния:

паяльником с применением мягких припоев;

ручной паяльной лампой с применением обычно твердых припоев;

электрическое паяние (место спая служит сопротивлением, через сопротивление пропускается ток низкого напряжения).

При паянии паяльником обычно применяют припои, температура плавления которых не выше точки плавления свинца (327°С). Такое паяние производят тогда, когда детали не подвергаются большим нагрузкам или требуют в дальнейшем распаивания. Если детали подвергаются в процессе работы нагреванию до высоких температур, паяние паяльником с применением мягких припоев исключается.

Подготовку паяльника для работы производят одновременно с подготовкой деталей. Паяльник слегка проковывают (частично для удаления нагара и окислов), зажимают в тиски и опиливают так, чтобы рабочая часть его была полукруглой. Если опиливать паяльник без предварительной проковки, то он скоро изнашивается. Конец паяльника делают полукруглым потому, что в этом случае он не так быстро охлаждается, как острый, лучше прогревает места спайки и равномернее разъедается жидким припоем.

После механической подготовки паяльник облуживают, для чего нагревают его не выше 400 °С, конец паяльника опускают в водный раствор хлористого цинка, после чего горячим паяльником трут о кусок припоя до тех пор, пока вся рабочая часть не покроется слоем полуды.

При работе паяльник должен иметь температуру, удовлетворяющую следующему требованию: если паяльник приложить рабочим местом к прутку припоя, часть припоя, прилегающая к паяльнику, должна расплавиться через 0,5-1 с. Во время работы температура паяльника должна быть такова, чтобы полуда или капли припоя, приставшие к паяльнику, были в жидком состоянии.

Более удобный способ облуживания паяльника заключается в следующем: в куске нашатыря (хлористого аммония) делают небольшие углубления и туда кладут кусочки припоя. Проводя горячим паяльником вперед и назад по твердому нашатырю, одновременно касаются и припоя. Таким образом паяльник облуживается быстрее.

Если нагретым паяльником коснуться шва и одновременно к шву подложить кусок припоя в виде прутка, ленты или проволоки, то припой расплавится и проникнет в шов. Излишек припоя разглаживают по шву паяльником. Припой также наносят на шов паяльником, так как к паяльнику всегда прилипают капли припоя, и если концом паяльника проводить по шву, жидкий припой всасывается в шов. Чтобы новые капли припоя перешли на паяльник, его снова отнимают от шва и прикладывают к куску припоя.

Лужение.

Технологический процесс лужения состоит из следующих операций:

очистки поверхности от посторонних веществ металлической щеткой, песком, известью или наждачной бумагой;
обезжиривания бензином или горячим водным раствором соды или едкого натра;
промывки в воде;
химической чистки от окислов травления в кислотах;
покрытия флюсами (хлористым цинком) кистью или погружением в водный раствор флюса;
подогревания до температуры плавления полуды и лужения.
Лудят небольшие предметы паяльником, в случае надобности рабочей части паяльника придают формы облуживаемого предмета (например, полукруга при лужении трубок и проволоки).

Лужение больших предметов - баков и других емкостей - производят методом натирания. Для этого изделие смачивают раствором хлористого цинка и нагревают (на горне, углях и т. п.) до температуры плавления олова, после чего посыпают порошкообразной смесью олова с хлористым аммонием (нашатырем). Олово при этом плавится и, растертое паклей, образует на поверхности ровный слой полуды. После лужения остатки флюса отмывают горячей водой.

При лужении пищевой посуды старую полуду проверяют на содержание свинца, для чего часть луженой поверхности смачивают 10-15 %-ным раствором уксусной кислоты. Через 2-3 мин на это же место наносят 5-6 капель 8-10 %-ного раствора йодистого калия, добавляют воды и растирают оба раствора по поверхности. При наличии свинца в полуде на смоченной поверхности появляется характерное желтое окрашивание раствора. В случае обнаружения свинца поверхность изделия протравливают смесью азотной и соляной кислот или же очищают пескоструйным аппаратом до полного удаления полуды.

Способы паяния.

Некоторые металлы или сплавы требуют специальных способов паяния.

Свинец. При нагревании свинец настолько быстро окисляется, что паяние его приходится вести в восстановительной атмосфере, которая предохраняет спаиваемые места от окисления и дает возможность припою легко соединяться с основным металлом. Восстановительная атмосфера образуется в результате применения для нагревания горелки, в которую поступает водород и "кислород воздуха, причем водород всегда должен быть в избытке. В качестве припоя применяют свинец.

Применение свинцово-оловянных припоев нежелательно, так как шов тогда начинает коррозировать в кислотах.

Цинк. Для паяния цинка применяют обычные свинцово-оловянные припои. Рекомендуем применять припой ПОС 30 в смеси с хлористым флюсом.

Если цинк чистый, то при паянии его обычно применяют насыщенный раствор хлористого цинка или разбавленную соляную кислоту. Если паяется загрязненный цинк или цинковый сплав, то при использовании в качестве флюса соляной кислоты в месте травления образуется черное отложение (поэтому рекомендуют применять соляную кислоту с хлористым аммонием).

Заметим, что двойные флюсы в большей степени предохраняют металл от коррозии, чем обыкновенный флюс. При паянии свинцово-оловянными припоями лучше применять флюс, содержащий хлористый аммоний и насыщенный раствор хлористого цинка, взятые в соотношении 1:5 (по массе). Для оловянно-кадмиевых припоев в качестве флюса рекомендуют брать едкий натр. При паянии цинковых сплавов, содержащих свыше 2 % алюминия (детали, изготовленные способом литья под давлением), применяют те же методы, что и при паянии алюминия или сплавов. В этом случае применяют припои оловянно-цинковые, а в качестве флюсов берут соляную кислоту, вазелин или стеарин. Иногда применяют флюс, состоящий из 85 % стеариновой кислоты и 15 % хлористого натрия.

Чугун. Чтобы запаять трещину или иной дефект в чугунной детали мягким припоем, производят тщательную механическую очистку места паяния и хорошо смачивают его соляной кислотой. Затем это место обрабатывают водным раствором хлористого цинка, посыпают порошком нашатыря (хлористого аммония) и подогревают паяльником или паяльной лампой. Нагревать место пайки надо до тех пор, пока не станет плавиться поднесенный к нему припой. Тогда натирают припоем место спайки и сейчас же протирают его порошком нашатыря, нанесенного на густую металлическую щетку или паклю. Эта операция -- предварительное лужение перед паянием. Пока деталь еще горячая, запаивают трещины или иные дефекты паяльником, перемещая его от одного конца трещины к другому. Если припой не проходит в трещину, надо острым зубилом снять с обоих краев ее небольшую фаску, вылудить это место и снова произвести паяние. Излишек припоя снимается шабером или напильником.

Припаивание металлов к стеклу, кварцу, фарфору. При припаивании металла к стеклу и другим подобным материалам необходимо на место паяния осадить гальваническим способом слой металла и далее производить паяние обычным способом.

Припаивание стеклянных изделий к металлу (например, при соединениях стеклянных трубок с металлическими фланцами и т. п.) производят так: предварительно поверхность стекла шлифуют наждачной бумагой, затем тряпкой в шероховатую поверхность втирается графит, и на это место осаждают медь в гальванической ванне. Далее производится паяние и вторичное осаждение меди (или никеля).

Кварц. Кварцевую деталь тщательно очищают и обезжиривают последовательной промывкой в азотной кислоте, щелочи и воде. На очищенную деталь наносят слой серебра с помощью двух растворов (содержание компонентов дано в граммах).

Раствор 1 (серебрильный)
Вода 200
Азотнокислое серебро 2
Аммиак до растворения осадка

Раствор 2 (восстановительный)
Вода 1000
Азотнокислое серебро 10
Сегнетова соль 3,3
Сахар-рафинад 3,3

Растворы 1 и 2 сливают вместе и наносят на поверхность детали с таким расчетом, чтобы вся подлежащая серебрению площадь была покрыта раствором. Непосредственно перед серебрением деталь следует обработать в течение 1-2 мин. 1 %-ным раствором хлористого олова и промыть дистиллированной водой. Процесс серебрения длится 20-30 мин до получения осадка золотистого оттенка. Посеребренную деталь ополаскивают и просушивают при 50-70 °С. После просушки на полученный слой серебра электролитически наращивают слой меди требуемой толщины из кислой медной ванны. Точно так же производят серебрение и меднение на фарфоре.

Алюминий. Для паяния алюминия на паяльник надевают рифленый наконечник (рабочая часть его пропилена трехгранным напильником). Насадку изготовляют из стали марки У-7 и закаливают, с тем чтобы зубцы не срабатывались. Насадку вытачивают токарном станке, и ее конец спиливают. Трубку насадки пропиливают ножовкой на четыре части, это создает пружинистость насадки, и она плотно вставляется в рабочую часть обычного паяльника. Диаметр отверстия в насадке высверливают в соответствии с диаметром рабочего конца паяльника.

Места спая тщательно очищают до блеска, на зубчики насадки берут расплавленную канифоль и наносят на спаиваемое место. Когда в процессе облуживания канифоль начнет покрывать алюминий, паяльник короткими движениями передвигают взад и вперед, и зубцы будут скоблить металл. Таким методом очищают всю поверхность места спая, после чего облуживают очищенные места. Затем приступают к паянию. Для этого берут на паяльник каплю олова, предварительно посыпанную канифолью, и подносят к облуженному месту. Если облуженное место шероховатое, то паяльником снимают эту шероховатость, которая представляет собой пористое олово, смешанное с частичками окиси алюминия, образующейся из-за недостатка флюса. Предварительно на место спая насыпают канифоль, берут на паяльник каплю олова и наносят на спаиваемый шов. Как только олово смочит место спая, паяльник снимают с металла. Затем паяние производят вторично, для этого место спая снова посыпают канифолью.

При паянии алюминия, особенно в процессе его лужения, паяльник следует хорошо разогреть и длительное время держать на одном месте и после прогрева металла медленно водить по спаиваемому шву.

Для паяния алюминиевых сплавов рекомендуются припои ПОС 50 и ПОС 90. Флюсом служит минеральное масло (особенно рекомендуется оружейное). Предварительно на спаиваемые швы наносят флюс и затем зачищают места пайки. Паяние ведут мощным, хорошо прогретым паяльником. Перед началом паяния металл следует хорошо прогреть. Для паяния алюминиевых сплавов выпускается и специальный припой П250А, он состоит из 80 % олова и 20 % цинка. Флюсом служит смесь йодида лития (2.-Зг) и олеиновой кислоты (20 г). Перед работой паяльник необходимо облудить указанным припоем, пользуясь канифолью. Спаиваемые поверхности очищают от остатков флюса марлевым тампоном, смоченным в ацетоне.

Паяние изделий с тонкими швами.

Для паяния таких изделий (например, цепочек, колец или иных ювелирных изделий) применяют специальный припой, состоящий из смеси равных частей - борной кислоты, цинка (тонкого цинка), меди, фосфора, которые замешивают на касторовом масле. В этот припой изделия окунают, и припой проникает в стык изделия. Затем изделия присыпают тальком для удаления лишнего припоя, оставшегося на поверхности изделия, после чего изделие интенсивно нагревают на газовой горелке с температурой 1000°С. При быстром нагревании припой дает микровспышку, при этом температура повышается до 1200 °С.

Паяние твердыми припоями. Для паяния изделий из меди и латуни, при паянии наиболее ответственных швов, применяют твердые припои, состоящие из сплава меди и цинка. К таким припоям относится латунь марки Л-63, которая содержит меди от 62 до 65 %, остальное цинк, а также припои с содержанием меди - 51 %, цинка - 44 и олова - 5%. Добавка олова придает припою пластичность и улучшает растекаемость по металлу. Температура плавления припоя Л-63-950 °С, припоя с оловом - 860 °С. Для паяния тонких изделий применяют припои в виде опилок, на одну часть припоя берут одну часть флюса - прокаленную буру. Паяние производят в струе пламени от паяльной лампы,

Флюсы. При паянии флюсы играют роль химических растворителей и поглотителей окислов. В процессе паяния они предохраняют металл от окисления и создают условия для смачивания металла припоем. При работе со свинцово-оловянными припоями в качестве флюсов применяют соляную кислоту, хлористый цинк, борную кислоту, буру, хлористый аммоний и др. К флюсам, не производящим химического действия, относятся: канифоль, воск, вазелин, оливковое масло и др. Эти флюсы образуют покрытие на поверхности металла, защищающее его от окисления.

Раствором соляной кислоты пользуются при паянии свинцово-оловянными и другими мягкими припоями.

Хлористый цинк - хорошее флюсующее средство для паяния латуни, меди, железа и других металлов и сплавов. Для приготовления хлористого цинка, нарезав мелкими кусочками цинк, «растворяют» в соляной кислоте, и затем приготовленный хлористый цинк разбавляют равным объемом воды.

Нашатырь (хлористый аммоний) хорошо растворяет жировые вещества.

Буру применяют как в растворенном, так и в твердом виде. Вместо буры можно также брать порошок стекла. Жидкое стекло тоже применяют в качестве флюса.

Флюс для паяния алюминия состоит из тунгового масла, канифоли и кальцинированного хлористого цинка, взятых в соотношении 3:2:1 (по массе). Для удаления окислов на алюминии при паянии применяют мелкие стальные опилки, которые в процессе паяния сдирают образующийся окисел.

Пайка мягкими припоями делится на кислотную и бескислотную. При кислотной пайке в качестве флюса употребляют хлористый цинк или техническую соляную кислоту, при бескислотной пайке - флю­сы, не содержащие кислот: канифоль, терпентин, стеарин, паяльную пасту и др. Бескислотной пайкой получают чистый шов; после кислот­ной пайки не исключена возможность появления коррозии.

Пайка мягкими припоями включает подготовку изделий к пайке, подготовку паяльника, расплавление припоя, охлаждение и очистку шва.

Подготовка изделий к паянию . Прочное паяное соединение может быть получено только в том случае, если место пай­ки предварительно очищено от грязи, жиров, продуктов коррозии и окисных пленок, которые сильно мешают растеканию припоя и его проникновению в шов. Поверхность изделий перед пайкой зачищают, обезжиривают, травят, промывают, сушат и собирают.

Механическую очистку поверхности изделий от окис­лов, ржавчины и окалины выполняют наждачной бумагой, напильни­ками, металлическими щетками, шлифовальными кругами, стальной или чугунной дробью.

Химическое обезжиривание в щелочных ваннах является наиболее простым и эффективным способом; заключается оно в обработке изделий в тонко размолотой венской извести, разве­денной водой до кашицеобразного состояния, которую кистью наносят на изделие, тщательно протирают и смывают водой.

Обезжиривание в органических раствори­телях применяется для удаления толстого слоя масла с изделий со сложными поверхностями, с внутренними полостями и глубокими отверстиями. Для этого применяют ацетон, бензол, скипидар, бензин, метиловый, этиловый спирт и др.

Химическое травление применяется в тех случаях, когда имеющиеся на поверхности изделия пленки окислов и других соединений обезжириванием не удаляются и препятствуют образова­нию прочного соединения припоя с паяемым металлом. Травление осуществляют погружением изделий в растворы серной, соляной, фосфорной и других кислот.

Очистка с помощью ультразвука резко сокра­щает процесс очистки деталей от жировых загрязнений. Этот способ применяют в случаях, когда другие способы не обеспечивают нужную чистоту поверхности. В ультразвуковых ваннах в качестве очищаю­щей среды используют органические растворители, щелочные раство­ры, горячую воду, мыльный раствор и др.

Подготовка паяльника заключается прежде всего в затачивании его под углом 30-40° и очищении от следов окалины. Затем обушок паяльника нагревают до 250-300° С при пайке мелких деталей и до температуры 340-400° С при пайке крупных. Следят, чтобы паяльник не перегрелся. Перегрев паяльника выше 400° С повышает окалинообразование и затрудняет лужение наконечника. Если паяльник недостаточно нагрет, то припой на спаиваемых по­верхностях быстро остывает и превращается в кашеобразную массу. Такая пайка очень непрочна.

Признаком перегрева является появление зеленоватого пламени и быстрое сгорание канифоли с выделением дыма вместо ее плавления. О нормальном нагреве паяльника судят по легкому покраснению обушка. При перегреве паяльник снимают с огня, дают ему немного остыть, зажимают в тисках и опиливают плоским напильником рабочий конец дочиста с обеих сторон и снимают с ребер заусенцы (рис. 454, а).

Во время длительной пайки периодически очищают ра­бочую часть паяльника от окалины стальной щеткой и напильником. Нагретый паяльник (рис. 454, б) быстро снимают с огня, очищают от окалины погружением в хлористый цинк (рис. 454, в), затем наби­рают с прутка 1-2 капли припоя (рис. 454 г) и двигают паяльни­ком по куску нашатыря (рис. 454, д), пока конец паяльника не покро­ется ровным слоем припоя. Затем протравливают места паяния (рис. 454, е).

Паяльник накладывают на место спая (рис. 454, ж), немного при­держивая его на одном месте для прогрева детали, затем медленно и равномерно перемещают по месту спая. При этом расплавленный при­пой стекает с паяльника и заполняет зазоры шва (0,05-0,15 мм).

Для предотвращения соседних со швом участков детали от нагрева их покрывают мокрыми тряпками или по­гружают в воду.

Для предохранения от порчи паяль­ники хранят на подставках (рис. 455).

После охлаждения швы промывают и зачищают, удаляя образовавшиеся при растворении окисной пленки и всплывшие на поверхность шлаки и остатки флюса, способные вызвать коррозию шва.

При массовом изготовлении деталей паяние осуществляют погру­жением в ванну с расплавленным припоем.

Прием пайки встык показан на рис.456, а, внахлестку на рис. 456, б, тонкой пластины с толстой внахлестку - на рис.456, в, внутренних швов труб - на рис. 456, г и толстых проводов - на рис. 456, д.

Особенности паяния сосудов для хранения горючих жидкостей. Паяние сосудов (бочек, бидонов) для горючих жидкостей или газов во избежание взрыва требует особых мер предосторожности.

Прежде всего, сосуды тщательно промывают. Перед паянием их доверху наполняют водой и выдерживают некоторое время, чтобы пары остатков горючего вытиснились полностью. Слив воду, приступа­ют к пайке.

Перед паянием можно также бак пропарить или промыть горячей водой до исчезновения запаха горючего (лучше промыть 6%-ным раствором каустической соды). Непромытый сосуд к рабочему месту подносить нельзя, так как при работающей паяльной лампе малей­шая неосторожность может повлечь за собой взрыв сосуда.

Когда паяние закончено, и изделие полностью охладилось, со шва снимают излишек припоя, изделие промывают и высушивают в сушил­ке сухими опилками или сжатым воздухом.

Паяние труб выполняют в следующем порядке: очищают напиль­ником или шабером место пайки, наносят кисточкой флюс на место спая, прикладывают нагретый и облуженный паяльник и пруток при­поя к месту спая, расплавляют припой, равномерно и медленно, не­прерывно перемещают паяльник по линии шва, давая припою запол­нить шов. После окончания паяния и полного остывания трубы уда­ляют флюс, промывают трубу в теплой воде.

Лужение.

Лужением называется,– покрытие поверхностей металлических изделий тонким слоем соот­ветствующего назначению изделий сплава (олова, сплава олова со свин­цом и др.) а наносимый слой - полу­дой.

Лужение, как правило, применяется при подготовке деталей к паянию, а также для предохранения изделий от коррозии, окисления (например, изделия для приготовления и хранения пищи).

Полуду приготавливают так же, как и припой. В качестве полуды пользуются оловом и сплавами на оловянной основе

Сплавами из олова со свинцом и цинком лудят металлические изделия в целях предохранения от ржавчины. Красивую белую и блес­тящую полуду для лужения художественных изделий получают из сплавов олова с висмутом.

Процесс лужения состоит из подготовки поверхности, приготов­ления полуды и ее нанесения на поверхность.

Подготовка поверхности к лужению зависит от требований, предъявляемых к изделиям, и от способа нанесения по­луды. Перед покрытием оловом поверхность обрабатывают щетками, шлифованием и обезжириванием травлением.

Щетками обрабатывают обычно поверхности, покрытые окалиной или сильно загрязненные. Изделия перед подготовкой промывают чистой водой, а при обработке применяют для ускорения процесса мелкий песок, пемзу и известь.

Неровности на изделиях удаляют шлифованием абразивными кру­гами и шкурками.

Химическое обезжиривание поверхностей изделий производится в водном растворе каустической соды (на 1 л воды - 10 г соды). Рас­твор наливают в металлическую посуду и нагревают до кипения. За тем в нагретый раствор погружают деталь на 10-15 мин, вынимают ее, промывают в чистой, несколько раз сменяемой теплой воде и просу­шивают. На хорошо обезжиренной поверхности капли чистой воды растекаются.

Жировые вещества удаляют венской известью. Минеральные мас­ла удаляют бензином, керосином и другими растворителями. Медные, латунные и стальные изделия травят в течении 20-23 мин в 20- 30%-ном растворе серной кислоты с подогревом.

Лужение осуществляют двумя способами погружением в расплав­ленную полуду (небольшие изделия) и растиранием (большие изде­лия).

Лужение погружением выполняют в чистой металли­ческой посуде, куда закладывают и в которой расплавляют полуду, насыпая на поверхность маленькие кусочки древесного угля для пре­дохранения от окисления. Медленно погрузив в расплавленную полу­ду (рис. 457, а), изделие держат в ней до прогрева, затем вынимают, быстро встряхивая. Излишки полуды снимают, протирая паклей, обсыпанной порошкообразным нашатырем. Затем изделие промывают в воде и сушат в древесных опилках.

Лужение растиранием выполняют, предварительно нанеся на очищенное место волосяной щеткой или паклей хлористый цинк. Затем равномерно нагревают поверхность изделия до темпера­туры плавления полуды, которая наносится от прутка (рис. 457, б). Обсыпав паклю порошкообразным нашатырем, растирают нагретую поверхность так, чтобы на ней полуда распределилась равномерно (рис 457, в). После этого нагревают и в таком же порядке облуживают другие места. По окончании лужения изделие промывают.

Как способ неразъемного соединения металлов пайка известна с давних пор. Паяными металлическими изделиями пользовались в Вавилоне, Древнем Египте, Риме и Греции. Удивительно, но за тысячелетия, прошедшие с тех пор, технология пайки изменилась не так сильно, как этого можно было бы ожидать.

Пайкой называется процесс соединения металлов посредством введенного между ними расплавленного связующего материала - припоя. Последний заполняет зазор между соединяемыми деталями и, застывая, прочно соединяется с ними, образуя неразъемное соединение.

При пайке припой нагревают до температуры, превышающей температуру его плавления, но не достигающей точки плавления металла соединяемых деталей. Становясь жидким, припой смачивает поверхности и заполняет все зазоры за счет действия капиллярных сил. Происходит растворение основного материала в припое и их взаимная диффузия. Застывая, припой прочно сцепляется с паяемыми деталями.

При пайке должно выполняться следующее температурное условие: Т 1 <Т 2 <Т 3 <Т 4 , где:

  • Т 1 - температура, при которой паяное соединение работает;
  • Т 2 - температура плавления припоя;
  • Т 3 - температура нагрева при пайке;
  • Т 4 - температура плавления соединимых деталей.

Отличия пайки от сварки

Паяное соединение по своему виду напоминает сварное, однако по своей сути пайка металлов радикально отличается от сварки. Основное отличие состоит в том, что основной металл не расплавляется, как при сварке, а лишь нагревается до определенной температуры, значение которой никогда не достигает температуры его плавления. Из этого основного различия вытекают все остальные.

Отсутствие расплавления основного металла делает возможным соединение пайкой деталей самых маленьких размеров, а также многократное разъединение и соединение спаянных деталей без нарушения их целостности.

Из-за того, что основной металл не расплавляется, его структура и механические свойства остаются неизменными, отсутствует деформация паяемых деталей, выдерживаются формы и размеры получаемого изделия.

Пайка позволяет соединять металлы (и даже неметаллы) в любом сочетании друг с другом.

При всех своих достоинствах пайка все же уступает сварке по прочности и надежности соединения. Из-за низкой механической прочности мягкого припоя, низкотемпературная пайка встык является непрочной, поэтому для достижения необходимой прочности детали необходимо соединять с перекрытием.

В наше время среди различных способов создания неразъемных деталей, пайка занимает второе место после сварки, а в некоторых областях ее позиции являются главенствующими. Трудно себе представить современную IT-промышленность без этого компактного, чистого и прочного способа соединения элементов электронных схем.

Применение пайки широко и многообразно. Ею соединяют медные трубы в теплообменниках, холодильных установках и всевозможных системах, транспортирующих жидкие и газообразные среды. Пайка является основным способом крепления твердосплавных пластин к металлорежущему инструменту. При кузовных работах с ее помощью крепят тонкостенные детали к тонкому листу. В виде лужения используют для защиты некоторых конструкций от коррозии.

Широко используется пайка и в домашних условиях. Ею можно соединять между собой детали из различных металлов, уплотнять резьбовые соединения, устранять пористость поверхностей, обеспечивать плотную посадку втулки разболтавшегося подшипника. Везде, где использование сварки, болтов, заклепок или обычного клея по каким-либо причинам невозможно, затруднительно или нецелесообразно, пайка, сделанная даже своими руками, оказывается спасительным выходом из ситуации.

Виды пайки

Классификация пайки носит довольно сложный характер из-за большого числа классифицируемых параметров. Согласно технологической классификации по ГОСТ 17349-79 пайка металлов подразделяется: по способу получения припоя, по характеру заполнения припоем зазора, по типу кристаллизации шва, по способу удаления оксидной пленки, по источнику нагрева, по наличию или отсутствию давления в стыке, по одновременности выполнения соединений.

Одной из основных является классификация пайки по температуре плавления используемого припоя. В зависимости от этого параметра пайку подразделяют на низкотемпературную (используются припои с температурой плавления до 450°C) и высокотемпературную (температура плавления припоев выше 450°C).

Низкотемпературная пайка более экономична и проста в исполнении, чем высокотемпературная. Ее преимуществом является возможность применения на миниатюрных деталях и тонких пленках. Хорошая тепло- и электропроводность припоев, простота выполнения процесса пайки, возможность соединения разнородных материалов обеспечивают низкотемпературной пайке ведущую роль при создании изделий в электронике и микроэлектронике.

К преимуществам высокотемпературной пайки относится возможность изготовления соединений, выдерживающих большую нагрузку, в том числе и ударную, а также получение вакуумно-плотных и герметичных соединений, работающих в условиях высоких давлений. Основными способами нагрева при высокотемпературной пайке, в единичном и мелкосерийном производстве, является нагрев газовыми горелками, индукционными токами средней и высокой частоты.

Композиционная пайка применяется при пайке изделий, имеющих некапиллярные или неравномерные зазоры. Она осуществляется с использованием композиционных припоев, состоящих из наполнителя и легкоплавкой составляющей. Наполнитель имеет температуру плавления выше температуры пайки, поэтому он не расплавляется, а лишь заполняет собой зазоры между паяемыми изделиями, служа средой распространения легкоплавкой составляющей.

По характеру получения припоя различают следующие виды пайки.

Пайка готовым припоем - самый распространенный вид пайки. Готовый припой расплавляется нагревом, заполняет зазор между соединяемыми деталями и удерживается в нем благодаря капиллярным силам. Последние играют очень важную роль в технологии пайки. Они заставляют расплавленный припой проникать в самые узкие щели соединения, обеспечивая его прочность.

Реакционно-флюсовая пайка , характеризующаяся протеканием реакции вытеснения между основным металлом и флюсом, в результате которой образуется припой. Наиболее известная реакция при реакционно-флюсовой пайке: 3ZnCl 2 (флюс) + 2Al (соединяемый металл) = 2AlCl 3 + Zn (припой).

Чтобы паять металл, кроме подготовленных соответствующим образом паяемых изделий необходимо иметь источник тепла, припой и флюс.

Источники тепла

Существует множество способов нагрева паяемых деталей. К самым распространенным и наиболее подходящим для пайки в домашних условиях относится нагрев паяльником, горелкой с открытым пламенем и строительным феном.

Нагрев паяльником осуществляют при низкотемпературной пайке. Паяльник нагревает металл и припой за счет тепловой энергии, аккумулированной в массе его металлического наконечника. Кончик паяльника прижимается к металлу, в результате чего происходит нагрев последнего и расплавление припоя. Паяльник может быть не только электрическим, но и газовым.

Газовые горелки - наиболее универсальный вид нагревательного оборудования. К этой категории можно отнести и паяльные лампы, заправляемые бензином или керосином (в зависимости от типа паяльной лампы). В качестве горючих газов и жидкостей в горелках может использоваться ацетилен, пропан-бутановая смесь, метан, бензин, керосин и пр. Газовая пайка может быть как низкотемпературной (при паянии массивных деталей), так и высокотемпературной.

Существуют и другие способы нагрева при пайке:

  • Пайка индукционными нагревателями, которая активно используется для припаивания твердосплавных резцов режущего инструмента. При индукционной пайке паяемые детали или их части нагреваются в катушке-индукторе, через которую пропускается ток. Преимуществом индукционной пайки является возможность быстрого нагрева толстостенных деталей.

  • Пайка в различных печах.
  • Пайка электросопротивлением, при которой детали нагреваются теплотой, выделяющейся вследствие прохождения электротока через паяемые изделия, являющиеся частью электрической цепи.
  • Пайка погружением, выполняющаяся в расплавленных припоях и солях.
  • Прочие виды пайки: дуговая, лучами, электролитная, экзотермическая, штампами и нагревательными матами.

Припои

В качестве припоев используются как чистые металлы, так и их сплавы. Чтобы припой мог хорошо исполнять свое предназначение, он должен обладать целым рядом качеств.

Смачиваемость . Прежде всего, припой должен обладать хорошей смачиваемостью по отношению к соединяемым деталям. Без этого будет просто отсутствовать контакт между ним и паяемыми деталями.

В физическом смысле смачивание подразумевает явление, при котором прочность связи между частицами твердого вещества и смачивающей его жидкости оказывается выше, чем между частицами самой жидкости. При наличии смачивания жидкость растекается по поверхности твердого вещества и проникает во все его неровности.


Пример несмачивающей (слева) и смачивающей (справа) жидкостей

Если припой не смачивает основной металл, пайка невозможна. В качестве такого примера можно привести чистый свинец, который плохо смачивает медь и не может поэтому служить припоем для неё.

Температура плавления . Припой должен иметь температуру плавления ниже температуры плавления соединяемых деталей, но выше той, при которой соединение будет работать. Температура плавления характеризуется двумя точками - температурой солидуса (температура, при которой плавится самый легкоплавкий компонент) и температурой ликвидуса (наименьшим значением, при которой припой становится полностью жидким).

Разница между температурами ликвидуса и солидуса называется интервалом кристаллизации. Когда температура соединения находится в интервале кристаллизации, даже незначительные механические воздействия приводят к нарушениям кристаллической структуры припоя, в результате чего может возникнуть его хрупкость и возрасти электрическое сопротивление. Поэтому необходимо соблюдать очень важное правило пайки - не подвергать соединение никакой нагрузке до полного окончания кристаллизации припоя.

Кроме хорошей смачиваемости и необходимой температуры плавления, припой должен обладать еще рядом свойства:

  • Содержание токсичных металлов (свинца, кадмия) не должно превышать установленных значений для определенных изделий.
  • Должна отсутствовать несовместимость припоя с соединяемыми металлами, которая может привести к образованию хрупких интерметаллических соединений.
  • Припой должен обладать термостабильностью (сохранением прочности паяного соединения при изменении температуры), электростабильностью (неизменностью электрических характеристик при токовых, тепловых и механических нагрузках), коррозионной стойкостью.
  • Коэффициент теплового расширения (КТР) не должен сильно отличаться от КТР соединяемых металлов.
  • Коэффициент теплопроводности должен соответствовать характеру эксплуатации паяного изделия.

В зависимости от температуры плавления припои подразделяют на легкоплавкие (мягкие) с температурой плавления до 450°С и тугоплавкие (твердые) с температурой плавления выше 450°С.

Легкоплавкие припои . Наиболее распространенными легкоплавкими припоями являются оловянно-свинцовые, состоящие из олова и свинца в различном соотношении. Для придания определенных свойств в них могут вводиться другие элементы, например, висмут и кадмий для понижения температуры плавления, сурьма для увеличения прочности шва и т.д.

Оловянно-свинцовые припои имеют низкую температуру плавления и относительно невысокую прочность. Их не следует применять для соединения деталей, испытывающих значительную нагрузку или работающих при температуре выше 100°С. Если все же приходится применять пайку мягкими припоями для соединений, работающих под нагрузкой, нужно увеличивать площадь соприкосновения деталей.

К наиболее широко используемым относятся оловянно-свинцовые припои ПОС-18, ПОС-30, ПОС-40, ПОС-61, ПОС-90, имеющие температуру плавления примерно 190-280°С (из них самый тугоплавкий - ПОС-18, самый легкоплавкий - ПОС-61). Цифры означают процентное содержание олова. Кроме основных металлов (Sn и Pb) припои ПОС содержат также небольшое количество примесей. В приборостроении ими паяют электросхемы, соединяют провода. В домашних условиях с их помощью соединяют самые различные детали.

Припой Назначение
ПОС-90 Пайка деталей и узлов, подвергающихся в дальнейшем гальванической обработке (серебрение, золочение)
ПОС-61 Лужение и пайка тонких спиральных пружин в измерительных приборах и других ответственных деталей из стали, меди, латуни, бронзы, когда не допустим или нежелателен высокий нагрев в зоне пайки. Пайка тонких (диаметром 0,05 - 0,08 мм) обмоточных проводов, в том числе высокочастотных, выводов обмоток, выводных концов ротора двигателей с ламелями коллектора, радиоэлементов и микросхем, монтажных проводов в полихлорвиниловой изоляции, а также пайка в тех случаях, когда требуется повышенная механическая прочность и электропроводность.
ПОС-40 Лужение и пайка токопроводящих деталей неответственного назначения, наконечников, соединение проводов с лепестками, когда допускается более высокий нагрев, чем в случаях использования ПОС-61.
ПОС-30 Лужение и пайка механических деталей неответственного назначения из меди и её сплавов, стали и железа.
ПОС-18 Лужение и пайка при пониженных требованиях к прочности шва, деталей неответственного назначения из меди и её сплавов, пайка оцинкованной жести.

Тугоплавкие припои . Из тугоплавких припоев чаще всего используются две группы - припои на основе меди и серебра. К первым относятся медно-цинковые припои, которые используются для соединения деталей, несущих лишь статическую нагрузку. Из-за определенной хрупкости их нежелательно применять в деталях, работающих в условиях ударов и вибрации.

К медно-цинковым припоям относятся, в частности, сплавы ПМЦ-36 (примерно 36% Сu, 64% Zn), с интервалом кристаллизации 800-825°C, и ПМЦ-54 (примерно 54% Cu, 46% Zn), с интервалом кристаллизации 876-880°C. С помощью первого припоя паяют латунь и прочие медные сплавы с содержанием меди до 68%, осуществляют тонкую пайку по бронзе. ПМЦ-54 используют для пайки меди, томпака, бронзы, стали.

Для соединения стальных деталей в качестве припоя используют чистую медь, латуни Л62, Л63, Л68. Соединения, паянные латунью, обладают более высокой прочностью и пластичностью в сравнении с соединениями, паянными медью, они способны вынести значительные деформации.

Серебряные припои относятся к наиболее качественным. Сплавы марки ПСр кроме серебра содержат медь и цинк. Припоем ПСр-70 (примерно 70% Ag, 25% Cu, 4% Zn), c температурой плавления 715-770°C, паяют медь, латунь, серебро. Его используют в тех случаях, когда место спая не должно резко уменьшать электропроводность изделия. ПСр-65 используют для пайки и лужения ювелирных изделий, фитингов из меди и медных сплавов, предназначенных для соединения медных труб, используемых в системах горячего и холодного питьевого водоснабжения, им паяют стальные ленточные пилы. Припой ПСр-45 используют для пайки стали, меди, латуни. Его можно применять в тех случаях, когда соединения работают в условиях вибрации и ударов, в отличии, например, от ПСр-25, который удары выдерживает плохо.

Другие виды припоя . Существует множество других припоев, предназначенных для пайки изделий, состоящих из редких материалов или работающих в особых условиях.

Никелевые припои предназначены для пайки конструкций, работающих в условиях высоких температур. Обладая температурой плавления от 1000°C до 1450°C, они могут использоваться для пайки изделий из жаропрочных и нержавеющих сплавов.

Золотые припои, состоящие из сплавов золота с медью или никелем, используются для пайки золотых изделий, для пайки вакуумных электронных трубок, в которых недопустимо наличие летучих элементов.

Для пайки магния и его сплавов применяют магниевые припои, содержащие помимо основного металла также алюминий, цинк и кадмий.

Материалы для пайки металлов могут иметь различную форму выпуска - в виде проволоки, тонкой фольги, таблеток, порошка, гранул, паяльных паст. От формы выпуска зависит способ их ввода в стыковую зону. Припой в виде фольги или паяльной пасты укладывается между соединяемыми деталями, проволока подается в зону соединения по мере расплавления ее конца.

Прочность паяного соединения зависит от взаимодействия основного металла с расплавленным припоем, которое в свою очередь зависит от наличия физического контакта между ними. Оксидная пленка, присутствующая на поверхности паяемого металла, препятствует контакту, взаимной растворимости и диффузии частиц основного металла и припоя. Поэтому ее необходимо удалять. Для этого применяются флюсы, в задачу которых входит не только удаление старой окисной пленки, но и препятствие образованию новой, а также снижение поверхностного натяжения жидкого припоя с целью улучшения его смачиваемости.

При пайке металлов применяются различные по составу и свойствам флюсы. Флюсы для пайки имеют различия:

  • по агрессивности (нейтральные и активные);
  • по температурному интервалу пайки;
  • по агрегатному состоянию - твердые, жидкие, геле- и пастообразные;
  • по виду растворителя - водные и неводные.

Кислые (активные) флюсы, например "Паяльную кислоту" на основе хлорида цинка, нельзя использовать при пайке электронных компонентов, так как они хорошо проводят электрический ток и вызывают коррозию, однако, из-за своей агрессивности, они очень хорошо подготавливают поверхность и поэтому незаменимы при пайке металлических конструкций. И чем химически более стоек металл нем активнее должен быть флюс. Остатки активных флюсов нужно обязательно тщательно удалять после завершения пайки.

Широко распространенными флюсами являются борная кислота (H 3 BO 3), бура (Na 2 B 4 O 7), фтористый калий (KF), хлористый цинк (ZnCl 2), канифольно-спиртовые флюсы, ортофосфорная кислота. Флюс должен соответствовать температуре пайки, материалу паяемых деталей и припоя. Например, бура используется для высокотемпературной пайки углеродистых сталей, чугуна, меди, твердых сплавов медными и серебряными припоями. Для пайки алюминия и его сплавов применяют препарат, состоящий из хлористого калия, хлористого лития, фтористого натрия и хлористого цинка (флюс 34А). Для низкотемпературной пайки меди и её сплавов, оцинкованного железа используется, например, состав из канифоли, этилового спирта, хлористого цинка и хлористого аммония (флюс ЛК-2).

Флюс может применяться не только в виде отдельного компонента, но и входить составным элементом в паяльные пасты и таблетированные виды так называемых флюсующихся припоев.

Паяльные пасты . Паяльная паста - это пастообразное вещество, состоящее из частиц припоя, флюса и различных добавок. Паяльная паста обычно используется для поверхностного монтажа SMD-компонентов, но удобна и для пайки в труднодоступных местах. Пайка радиодеталей такой пастой осуществляется с помощью термовоздушной или инфракрасной станции. Получается красивая и качественная пайка. Однако из-за того, что большая часть паяльных паст не содержит активных флюсов позволяющих паять, например сталь, большинство их подходят только для пайки электроники.

Пайка стали

Пайка стали своими руками не представляет особой сложности. Стальные изделия с успехом можно паять даже легкоплавкими припоями, например, ПОС-40, ПОС-61 или чистым оловом. А, например, легкоплавкие припои на основе цинка малопригодны для пайки углеродистых и низколегированных сталей из-за плохого смачивания, затекания в зазор и низкой прочности паяных соединений в результате образования по границе шва и стали интерметаллидной хрупкой прослойки.

В общем виде пайка стали осуществляется в такой последовательности.

  • Производится очистка от загрязнений паяемых деталей.
  • С соединяемых поверхностей удаляется окисная пленка - механической зачисткой (металлической щеткой, шлифовальной шкуркой или кругом, дробеструйной обработкой) и обезжиривание. Обезжиривание можно осуществлять едким натром (5-10 г/л), углекислым натрием (15-30 г/л), ацетоном или другим растворителем.
  • Детали в месте соединения покрываются флюсом.
  • Осуществляется сборка изделия с фиксированием деталей в нужном положении.

  • Изделие разогревается. Пламя должно быть нормальным или восстановительным - без избытка кислорода. В сбалансированной газовой смеси пламя только нагревает металл и иного воздействия не оказывает. В случае сбалансированной газовой смеси пламя горелки обладает ярко-синим цветом и небольшой величиной. Пересыщенное кислородом пламя окисляет поверхность металла. Факел пламени горелки, насыщенный кислородом бледно-голубого цвета и маленький. Прогревать нужно все соединение, перемещая пламя в разные стороны, при этом время от времени касаются припоем соединения. Нужная температура достигается тогда, когда припой начинает плавиться при прикосновении к деталям. Не нужно создавать избыточного нагрева. Обычно с практикой достаточность нагрева определяется по цвету поверхности металла и появлению дыма флюса.

  • На соединяемые стыки наносится флюс.


Пайка металла: нанесение флюса. На фото припой покрытый оболочкой из флюса.

  • В зону стыка подается припой (в виде проволоки, или кусочка, уложенного в стык) и производится подогрев детали и припоя до расплавления последнего и затекания в стык. Под влиянием капиллярных сил припой сам втягивается в зазор между деталями.

Припой должен плавиться не от пламени горелки, а от теплоты прогретого соединения.

  • После завершения пайки, изделие очищается от остатков флюса и лишнего припоя.

Если есть возможность, можно соединяемые детали сначала залудить припоем в месте контакта. Затем детали соединить и нагреть до температуры плавления припоя. В этом случаи может получиться более прочное соединение.

Температура пайки определяется маркой припоя.

Причины неудачи . Если припой не распределяется по поверхности деталей, то это может быть по следующим причинам:

  • Недостаточный прогрев деталей. Продолжительность прогрева должна соответствовать массивности деталей.
  • Плохая предварительная очистка поверхности от загрязнений.
  • Использование неподходящего флюса. Например, нержавеющая стали или алюминий требуют очень химически активных флюсов. Или флюс может не соответствовать температуре пайки.
  • Использование неподходящего припоя. Например, чистый свинец так плохо смачивает металлы, что им паять нельзя.

Пайка других металлов

Особенности пайки чугуна . Паяются серый и ковкий чугуны, белый не подлежит пайке из-за плохой обрабатываемости и хрупкости. При пайке чугуна возникают две проблемы, мешающие получению качественного соединения: возникновение объемных и структурных изменений в условиях местного газопламенного нагрева, и плохая смачиваемость чугуна из-за присутствия в нем включений свободного графита.

Первую проблему помогает решить пайка при температурах не выше 750°С.

Для решения второй проблемы, инструкции по пайке чугуна содержат требования удаления свободного графита с паяемых поверхностей. Это можно делать несколькими способами: тщательной механической зачисткой, окислением графита в летучий оксид углерода обработкой соединяемого стыка борной кислотой или хлоратом калия, выжиганием углерода пламенем горелки с последующей очисткой проволочной щеткой. Существуют также высокоактивные флюсы для чугуна, которые хорошо удаляют графитовые включения.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Умение паять в современной жизни, насыщенной электроприборами и электроникой, необходимо так же, как умение пользоваться отверткой и вантузом. Методов пайки металлов существует много, но прежде всего нужно знать, как паять паяльником, хотя в бытовых условиях осуществимы и могут понадобиться также другие ее способы. В помощь желающим освоить технологию ручных спаечных работ и предназначена эта статья.

Флюсы

Паяльные флюсы делятся на нейтральные (неактивные, бескислотные), химически с основным металлом не взаимодействующие или взаимодействующие в ничтожной степени, активированные, химически действующие на основной металл при нагреве, и активные (кислотные), действующие на него и холодными. В отношении флюсов наш век принес больше всего нововведений; большей частью все же хороших, но начнем с неприятных.

Первое – технически чистого ацетона для промывки паек в широкой продаже больше нет вследствие того, что он используется в подпольном производстве наркотиков и сам обладает наркотическим действием. Заменители технического ацетона – растворители 646 и 647.

Второе – хлористый цинк в активированных флюс-пастах часто заменяют тераборнокислым натрием – бурой. Соляная кислота – высокотоксичное химически агрессивное летучее вещество; хлорид цинка также токсичен, а при нагреве сублимирует, т.е. улетучивается не плавясь. Бура безопасна, но при нагреве выделяет большое количество кристаллизационной воды, что немного ухудшает качество пайки.

Примечание: бура сама по себе паяльный флюс для пайки погружением в расплавленный припой, см. далее.

Хорошая новость – теперь в продаже есть широчайший ассортимент флюсов на все случаи паяльной жизни. Для обычных спаечных работ вам понадобятся (см. рис.) недорогие СКФ (спиртоканифольный, бывший КЭ, второй в списке бескислотных флюсов в табл. I.10 на рис. выше) и паяльная (травленая) кислота, это первый в списке кислотный флюс. СКФ пригоден для пайки меди и ее сплавов, а паяльная кислота – для стали.

Пайки от СКФ нужно обязательно промывать: в состав канифоли входит янтарная кислота, при длительном контакте разрушающая металл. Кроме того, случайно пролитый СКФ мгновенно растекается по большой площади и превращается в очень долго сохнущую чрезвычайно липкую гадость, пятна от которой ничем не сводятся ни с одежды, ни с мебели, ни с пола со стенами. В общем СКФ для пайки хороший флюс, но не для ротозеев с растяпами.

Полноценный заменитель СКФ, но не такой противный при небрежном обращении – флюс ТАГС. Стальные детали более массивные, чем допустимо для пайки паяльной кислотой, и более прочно, паяют флюсом Ф38. Универсальным флюсом можно паять практически любые металлы в любых сочетаниях, в т.ч. алюминий, но прочность спая с ним не нормируется. К пайке алюминия мы еще вернемся.

Примечание: радиолюбители, имейте в виду – сейчас есть в продаже флюсы для пайки эмалированных проводов без зачистки!

Другие виды пайки

Любители мастерить также часто паяют сухим паяльником с бронзовым нелуженым жалом, т. наз. паяльным карандашом, поз. 1 на рис. Он хорош там, где недопустимо растекание припоя вне зоны пайки: в ювелирных изделиях, витражах, паяных предметах прикладного искусства. Иногда всухую паяют и микрочипы, монтируемые на поверхность, с шагом расположения выводов 1,25 или 0,625 мм, но это дело рискованное и для опытных специалистов: плохой тепловой контакт требует избыточной мощности паяльника и длительного нагрева, а обеспечить стабильность прогрева при ручной пайке невозможно. Для сухой пайки применяют гарпиус из ПОСК-40, 45 или 50 и флюс-пасты, не требующие удаления остатков.

Тупиковые скрутки толстых проводов (см. выше) паяют погружением в футорку – ванночку с расплавленным припоем. Когда-то футорку грели паяльной лампой (поз. 2а), но ныне это дикость первобытная: электрофуторка, или паяльная ванна (поз. 2) дешевле, безопаснее и дает лучшее качество пайки. Скрутку в футорку вводят сквозь слой кипящего флюса, подаваемого на припой после его расплавления и прогрева до рабочей температуры. Простейший флюс в данном случае – порошок канифоли, но она скоро выкипает и еще быстрее пригорает. Лучше флюсовать футорку бурой, а если паяльная ванна используется для оцинковки мелких деталей, то это единственно возможный вариант. В таком случае максимальная температура футорки должна быть не ниже 500 градусов Цельсия, т.к. цинк плавится при 440.

Наконец, массивную медь в изделиях, напр. трубы, паяют высокотемпературной пайкой в пламени. В нем всегда есть несгоревшие частицы, жадно поглощающие кислород, поэтому пламя обладает, как говорят химики, восстановительными свойствами: снимает остаточный окисел и не дает образоваться новому. На поз. 3 видно, как пламя специальной паяльной горелки буквально выдувает все ненужное из зоны пайки.

Высокотемпературную пайку ведут, см. рис. справа, равномерно потирая с нажимом зону пайки 1 палочкой твердого припоя 2. Пламя горелки 3 должно следовать за припоем, чтобы горячее пятно не оказалось на воздухе. Предварительно зону пайки греют, пока не пойдут цвета побежалости. К луженой твердым припоем поверхности можно припаять что-то еще припоем мягким как обычно. Подробнее о пайке в пламени см. далее, когда дело дойдет до труб.

Курьезно, но в некоторых источниках паяльную горелку обзывают паяльной станцией. Ну, рерайт есть рерайт, что с него возьмешь. На самом деле настольная паяльная станция (см. след. рис.) – оборудование для тонких паяльных работ: с микрочипами и др., где недопустим перегрев, растекание припоя куда не надо и пр. огрехи. Паяльная станция точно поддерживает заданную температуру в зоне пайки, и, если станция газовая, то контролирует подачу туда газа. В таком случае горелка входит в ее комплект, но сама по себе паяльная горелка паяльная станция не более, чем каменоломня – собор Василия Блаженного.

Как паять алюминий

Благодаря современным флюсам паять алюминий стало в общем не сложнее, чем медь. Для низкотемпературной его пайки предназначен флюс Ф-61А, см. рис. Припой – любой аналог припоев Авиа; в продаже есть разные. Единственно что – стержень в паяльник лучше вставить бронзовый луженый с насечками на жале примерно как у напильника. Он под слоем флюса легко соскоблит прочную пленку окисла, которая и не дает алюминию паяться просто так.

Для высокотемпературной пайки алюминия припоем 34А предназначен флюс Ф-34А. Однако греть зону пайки пламенем нужно очень осторожно: температура плавления самого алюминия всего 660 Цельсия. Поэтому высокотемпературную пайку алюминия лучше применять беспламенную камерную (пайка с печным подогревом), но оборудование для нее стоит дорого.

Есть еще «пионерский» способ пайки алюминия с предварительным омеднением. Он пригоден, когда требуется только электрический контакт, а механические напряжения в зоне пайки исключены, напр., если нужно соединить алюминиевый кожух с общей шиной печатной платы. «По-пионерски» пайка алюминия осуществляется на установке, показанной на рис. слева. Порошок медного купороса насыпают горкой в зону пайки. Зубную щетку пожестче, обмотанную голым медным проводом, окунают в дистиллированную воду и растирают ею с нажимом купорос. Когда на алюминии появится медное пятно, его лудят и паяют как обычно.

Мелкая пайка

В пайке печатных плат есть свои особенности. Как паять детали на печатные платы, в целом см. небольшой мастер-класс в рисунках. Лужение проводов отпадает, т.к. выводы радиокомпонент и чипов уже луженые.

В любительских условиях, во-первых, нет особого смысла лудить все токоведущие дорожки, если устройство работает на частотах до 40-50 МГц. В промышленном производстве платы лудят низкотемпературными способами, напр. напылением или гальваническим. Прогрев дорожек паяльником по всей длине ухудшит их сцепление с основой и увеличит вероятность отслоения. После монтажа компонент плату лучше покрыть лаком. Медь от этого сразу потемнеет, но на работоспособность устройства это никак не повлияет, если только речь не идет об СВЧ.

Затем, взгляните на нечто безобразное слева на след. рис. За такой брак и в недоброй памяти советском МЭПе (министерстве электронной промышленности) монтажников разжаловали в грузчики или подсобники. Дело даже не во внешнем виде или перерасходе дорогого припоя, а, во-первых, в том, что за время остывания этих блямб перегрелись и монтажные площадки, и детали. А большие тяжелые наплывы припоя – довольно инертные для уже ослабленных дорожек грузики. Радиолюбителям хорошо знаком эффект: спихнул нечаянно плату-«каракатицу» на пол – 1-2 или более дорожек отслоились. Не дожидаясь и первой перепайки.

Паечные наплывы на печатных платах должны быть округлыми гладкими высотой не более 0,7 диаметра монтажной площадки, см. справа на рис. Кончики выводов должны немного выступать из наплывов. Кстати, плата полностью самодельная. Есть способ в домашних условиях сделать печатный монтаж таким же точным и четким, как фабричный, да еще и вывести там надписи, какие хочется. Белые пятнышки – блики от лака при фотосъемке.

Наплывы вогнутые и тем более сморщенные – тоже брак. Просто вогнутый наплыв значит, что припоя недостаточно, а морщинистый, кроме того, что в пайку проник воздух. Если собранное устройство не работает и есть подозрение на непропай, смотрите в первую очередь такие места.

ИМС и чипы

По сути интегральная микросхема (ИМС) и чип одно и тоже, но для ясности, как в общем и принято в технике, микросхемами-«микрухами» оставим ИМС в DIP-корпусах, до больших по степени интеграции включительно, с выводами через 2,5 мм, устанавливаемые в монтажные отверстия или паечные пистоны, если плата многослойная. Чипами пусть будут сверхбольшие ИМС-«миллионники», монтируемые на поверхность, с шагом выводов 1,25 мм и меньшим, а микрочипами – миниатюрные ИМС в таких же корпусах для телефонов, планшетов, ноутбуков. Процессоры и прочих «камни» с жесткими многорядными штыревыми выводами не трогаем: они не паяются, а устанавливаются в специальные панельки, которые запаиваются в плату однократно при ее сборке на предприятии.

Заземление паяльника

Современные КМОП (CMOS) ИМС по чувствительности к статическому электричеству такие же, как ТТЛ и ТТЛШ, держат без повреждения потенциал в 150 В в течение 100 мс. Амплитудное значение действующего напряжения сети 220 В – 310 В (220х1,414). Отсюда вывод: паяльник нужен низковольтный, на напряжение 12-42В, включенный через понижающий трансформатор на железе, не через импульсник или емкостный балласт! Тогда даже прямой пробой на жало не испортит дорогущие чипы.

Остаются еще случайные, и тем более опасные, выбросы сетевого напряжения: сварку рядом включили, бросок сети был, проводка заискрила и т.п. Самый надежный способ уберечься от них – не отводить «бродячие» потенциалы с жала паяльника, а не пускать из туда. Для этого еще на спецпредприятиях СССР применялась схема включения паяльников, показанная на рис.:

Точка соединения C1 C2 и сердечник трансформатора подключаются непосредственно к контуру защитного заземления, а к средней точке вторичной обмотки – экранная обмотка (незамкнутый виток медной фольги) и заземлители рабочих мест. К контуру эта точка подключается отдельным проводом. При достаточной мощности трансформатора к нему можно подключать сколько угодно паяльников, не заботясь о заземлении каждого в отдельности. В домашних условиях точки a и b соединяют с общей клеммой заземления отдельными проводами.

Микросхемы, пайка

Микросхемы в DIP-корпусах паяются как прочие радиоэлектронные компоненты. Паяльник – до 25 Вт. Припой – ПОС-61; флюс – ТАГС или спиртоканифоль. Смывать его остатки нужно ацетоном или его заменителями: спирт берет канифоль туго, и между ножками отмыть им полностью не удается ни кисточкой, ни ветошью.

Что до чипов и тем более микрочипов, то паять их вручную настоятельно не рекомендуется специалистам любого уровня: это лотерея в весьма проблематичным выигрышем и весьма вероятным проигрышем. Если уж у вас дело дойдет до таких тонкостей как ремонт телефонов и планшетов, то придется раскошелиться на паяльную станцию. Пользоваться ею не намного сложнее, чем ручным паяльником, см. видео ниже, а цены вполне приличных паяльных станций ныне доступны.

Видео: уроки пайки микросхем

Микросхемы, выпайка

«По-правильному», ИМС для проверки при ремонте не выпаиваются. Их диагностика производится на месте специальными тестерами и методами и негодная удаляется раз и навсегда. Но любители не всегда могут себе это позволить, поэтому на всякий случай ниже даем ролик о методах выпайки ИМС в DIP-корпусах. Чипы с микрочипами умельцы тоже исхитряются выпаивать, напр., подсовывая под ряд выводов нихромовую проволочку и грея сухим паяльников, но это лотерея еще менее выигрышная, чем ручной монтаж больших и сверхбольших ИМС.

Видео: выпайка микросхем – 3 способа

Как паять трубы

Медные трубы паяют высокотемпературным способом любым твердым припоем для меди с активированной флюс-пастой, не требующей удаления остатков. Далее возможны 3 варианта:

  • В медных (латунных, бронзовых) соединительных муфтах – паяльных фитингах.
  • С полной раздачей.
  • С неполными раздачей и сжатием.

Пайка медных труб в фитингах надежнее прочих, но требует значительных дополнительных расходов на муфты. Единственный случай, когда она незаменима – устройство отвода; тогда используется фитинг-тройник. Обе паяемые поверхности заранее не лудят, но покрывают флюсом. Затем трубу вводят в фитинг, надежно фиксируют и пропаивают стык. Пайка считается законченной, когда припой перестанет уходить в зазор между трубой и муфтой (нужен 0,5-1 мм) и выступит снаружи небольшим валиком. Фиксатор снимают не ранее чем через 3-5 мин по затвердевании припоя, когда стык уже можно держать рукой, иначе припой не наберет прочность и стык когда-то да потечет.

Как паяют трубы с полной раздачей, показано слева на рис. Давление «раздатая» пайка держит такое же, как и фитинговая, но требует доп. специнструмента для разворачивания раструба и повышенного расхода припоя. Фиксация впаиваемой трубы не обязательна, ее можно вдвинуть в раструб с проворотом, пока не заклинит намертво, поэтому пайку с полной раздачей часто делают в неудобных для установки фиксатора местах.

В домашней разводке из тонкостенных труб малого диаметра, где давление уже небольшое, а его потери несущественны, целесообразной может оказаться пайка с неполной раздачей одной трубы и сужением другой, поз. I справа на рис. Для подготовки труб достаточно круглой палки из твердого дерева с коническим острием в 10-12 градусов с одной стороны и усеченно-конической лункой в 15-20 градусов с другой, поз II. Концы труб обрабатывают, пока они без заклинивания не войдут друг в друга прим. на 10-12 мм. Лудят поверхности заранее, наносят на луженые еще флюса и соединяют до заклинивания. Затем греют до плавления припоя и подпирают зауженную трубу, пока ее не заклинит. Расход припоя выходит минимальным.

Важнейшее условие надежности такого стыка – сужение должно быть ориентировано по току воды, поз. III. Школьный закон Бернулли – обобщение для идеальной жидкости в широкой трубе, а у реальной жидкости в узкой трубе за счет ее (жидкости) вязкости максимум скачка давления смещается противоположно току, поз. IV. Возникает составляющая силы давления, прижимающая зауженную трубу к раздатой, и пайка получается очень надежной.

Что еще?

Ах да, подставки для паяльников. Классическая, слева на рис., пригодна для любых стержневых. Где на ней быть ванночкам для припоя и канифоли – дело ваше, какой-либо регламентации нет. Для маломощных паяльников с фартуком пригодны упрощенные подставки-скобы, в центре.